B→D^(*)lv semileptonic decay form factors in LQCD

Takashi Kaneko (JLQCD Collaboration)

The 11th International Workshop on he CKM Unitarity Triangle (CKM 2021) November 26th, 2021, Zoom / Melbourne

hint of new physics ?

 $|V_{cb}|$ tension

hint of new physics ?

 $|V_{cb}|$ tension

new physics? \Leftrightarrow Crivellin-Pokorski '18: $d_L^{qb}\partial^{\nu}(\overline{q}\sigma_{\mu\nu}P_Lb) \Leftrightarrow \Gamma(Z \rightarrow b\overline{b})$

hint of new physics ?

 $|V_{cb}|$ tension

new physics? \Leftrightarrow Crivellin-Pokorski '18: $d_L^{qb}\partial^{\nu} \left(\overline{q} \sigma_{\mu\nu} P_L b \right) \Leftrightarrow \Gamma \left(Z \rightarrow b \overline{b} \right)$

need deeper understanding of th. and/or exp't uncertainties

- theory side : form factors (FFs) describing non-perturbative QCD effects

"relativistic" convention

$$\langle D(p')|V^{\mu}|\bar{B}(p)\rangle = f_{+}(p+p')^{\mu} + f_{-}(p-p')^{\mu} \langle D^{*}(p',\epsilon)|V^{\mu}|\bar{B}(p)\rangle = ig\epsilon^{\mu\alpha\beta\gamma}\epsilon^{*}_{\alpha}p'_{\beta}p_{\gamma}, \langle D^{*}(p',\epsilon)|A^{\mu}|\bar{B}(p)\rangle = f\epsilon^{*\mu} + (\epsilon^{*} \cdot p)\left[a_{+}(p+p')^{\mu} + a_{-}(p-p')^{\mu}\right]$$

"relativistic" convention

$$\langle D(p') | V^{\mu} | \bar{B}(p) \rangle = f_{+}(p+p')^{\mu} + f_{-}(p-p')^{\mu} \langle D^{*}(p',\epsilon) | V^{\mu} | \bar{B}(p) \rangle = ig\epsilon^{\mu\alpha\beta\gamma}\epsilon^{*}_{\alpha}p'_{\beta}p_{\gamma}, \langle D^{*}(p',\epsilon) | A^{\mu} | \bar{B}(p) \rangle = f\epsilon^{*\mu} + (\epsilon^{*} \cdot p) [a_{+}(p+p')^{\mu} + a_{-}(p-p')^{\mu}]$$

"HQET" convention $|\text{HQET}\rangle = |\text{rel}\rangle/\sqrt{M}$ $\langle D(v')|V^{\mu}|\bar{B}(v)\rangle = h_{+}(w) (v + v')^{\mu} + h_{-}(w) (v - v')^{\mu}$ $\langle D^{*}(v', \varepsilon')|V^{\mu}|\bar{B}(v)\rangle = ih_{V}(w) \epsilon^{\mu\nu\alpha\beta} \varepsilon_{\nu}'^{*}v_{\alpha}'v_{\beta}$ $\langle D^{*}(v', \varepsilon')|A^{\mu}|\bar{B}(v)\rangle = h_{A_{1}}(w) (w + 1) \varepsilon'^{*\mu} - \left[h_{A_{2}}(w) v^{\mu} + h_{A_{3}}(w) v'^{\mu}\right] \varepsilon^{*} \cdot v$

"relativistic" convention

$$\langle D(p')|V^{\mu}|\bar{B}(p)\rangle = f_{+}(p+p')^{\mu} + f_{-}(p-p')^{\mu} \langle D^{*}(p',\epsilon)|V^{\mu}|\bar{B}(p)\rangle = ig\epsilon^{\mu\alpha\beta\gamma}\epsilon^{*}_{\alpha}p'_{\beta}p_{\gamma}, \langle D^{*}(p',\epsilon)|A^{\mu}|\bar{B}(p)\rangle = f\epsilon^{*\mu} + (\epsilon^{*} \cdot p)\left[a_{+}(p+p')^{\mu} + a_{-}(p-p')^{\mu}\right]$$

"HQET" convention $|\text{HQET}\rangle = |\text{rel}\rangle/\sqrt{M}$ $\langle D(v')|V^{\mu}|\bar{B}(v)\rangle = h_{+}(w) (v + v')^{\mu} + h_{-}(w) (v - v')^{\mu}$ $\langle D^{*}(v', \varepsilon')|V^{\mu}|\bar{B}(v)\rangle = ih_{V}(w) \epsilon^{\mu\nu\alpha\beta} \varepsilon_{\nu}'^{*}v_{\alpha}'v_{\beta}$ $\langle D^{*}(v', \varepsilon')|A^{\mu}|\bar{B}(v)\rangle = h_{A_{1}}(w) (w + 1) \varepsilon'^{*\mu} - [h_{A_{2}}(w) v^{\mu} + h_{A_{3}}(w) v'^{\mu}] \varepsilon^{*} \cdot v$

- 2 FFs for $B \rightarrow D\ell v$; 4 FFs for $B \rightarrow D^*\ell v$ w/ $\varepsilon_{D^*}p_{D^*} = 0$
- function of $q^2 = t = (p p')^2$ and $w = v v' W/v^{(\prime)} = p / M_{B(D(*))}$

"relativistic" convention

$$\langle D(p') | V^{\mu} | \bar{B}(p) \rangle = f_{+}(p+p')^{\mu} + f_{-}(p-p')^{\mu} \langle D^{*}(p',\epsilon) | V^{\mu} | \bar{B}(p) \rangle = ig\epsilon^{\mu\alpha\beta\gamma}\epsilon^{*}_{\alpha}p'_{\beta}p_{\gamma}, \langle D^{*}(p',\epsilon) | A^{\mu} | \bar{B}(p) \rangle = f\epsilon^{*\mu} + (\epsilon^{*} \cdot p) [a_{+}(p+p')^{\mu} + a_{-}(p-p')^{\mu}]$$

"HQET" convention $|\text{HQET}\rangle = |\text{rel}\rangle/\sqrt{M}$ $\langle D(v')|V^{\mu}|\bar{B}(v)\rangle = h_{+}(w) (v + v')^{\mu} + h_{-}(w) (v - v')^{\mu}$ $\langle D^{*}(v', \varepsilon')|V^{\mu}|\bar{B}(v)\rangle = ih_{V}(w) \epsilon^{\mu\nu\alpha\beta} \varepsilon_{\nu}'^{*}v_{\alpha}'v_{\beta}$ $\langle D^{*}(v', \varepsilon')|A^{\mu}|\bar{B}(v)\rangle = h_{A_{1}}(w) (w + 1) \varepsilon'^{*\mu} - [h_{A_{2}}(w) v^{\mu} + h_{A_{3}}(w) v'^{\mu}] \varepsilon^{*} \cdot v$

- 2 FFs for $B \rightarrow D\ell v$; 4 FFs for $B \rightarrow D^*\ell v$ w/ $\varepsilon_{D^*}p_{D^*} = 0$
- function of $q^2 = t = (p p')^2$ and $w = v v' W/v^{(\prime)} = p / M_{B(D(*))}$

Collaboration	Ref.	N_f	Dublic	Continu	chiral .	finite ve	tenorin.	heavy.g	w = 1 form
HPQCD 15, HPQCD 17[605 FNAL/MILC 15C Atoui 13	[607] [604] [601]	$2+1 \\ 2+1 \\ 2$	A A A	○ ★ ★	0 0 0	○ ★ ★	0	< < < <	$ \begin{array}{l} \mathcal{G}^{B \to D}(1) \\ \mathcal{G}^{B \to D}(1) \\ \mathcal{G}^{B \to D}(1) \end{array} $
HPQCD 17B FNAL/MILC 14	[609] [603]	2+1+1 2+1	A A	○ ★	★ ○	* *	0 0	 ✓ ✓ 	$\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$

Collaboration	Ref.	N_f	Dublic	Contrinu	Chine?	finite Vc	tenorin.	hearly o	w = 1 form		
HPQCD 15, HPQCD 17[605 FNAL/MILC 15C Atoui 13	5, 607] [604] [601]	$2+1 \\ 2+1 \\ 2$	A A A	○ ★ ★	0 0 0	○ ★ ★	0	< < <	$\mathcal{G}^{B \to D}(1)$ $\mathcal{G}^{B \to D}(1)$ $\mathcal{G}^{B \to D}(1)$	}	both $h_{+'} h_{-}$ also @ $w \neq 1$
HPQCD 17B FNAL/MILC 14	[609] [603]	2+1+1 2+1	A A	○ ★	★ ○	* *	0 0	✓ ✓	$\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$		

Collaboration	Ref.	N_f	Dublic	Continu	chired ,	furite Ve	^{ten} on,	hear	w = 1 form		
HPQCD 15, HPQCD 17[605 FNAL/MILC 15C Atoui 13	, 607] [604] [601]	2+1 2+1 2	A A A	○ ★ ★	0 0 0	○ ★ ★	0	✓✓✓	$\mathcal{G}^{B \to D}(1)$ $\mathcal{G}^{B \to D}(1)$ $\mathcal{G}^{B \to D}(1)$	}	both h_+ , h also @ $w \neq 1$
HPQCD 17B FNAL/MILC 14	[609] [603]	2+1+1 2+1	A A	○ ★	* 0	* *	0	√ √	$\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$	}	only h_{A1} @ $w = 1$

 $B \rightarrow D^{(*)} \ell v$ FFs : review by Flavor Lattice Averaging Group 2111.09849

				lin, del	ê, '	v' 2 ' 20	and the second second		Y		
Collaboration	Ref.	N_f	and	Ont	Chi	fini,	^t en	$b_{e_{a}}$	w = 1 form		
HPQCD 15, HPQCD 17[603 FNAL/MILC 15C Atoui 13	5, 607] [604] [601]	2+1 2+1 2	A A A	○ ★ ★	0 0 0	○ ★ ★	0	 ✓ ✓ ✓ 	$\mathcal{G}^{B \to D}(1)$ $\mathcal{G}^{B \to D}(1)$ $\mathcal{G}^{B \to D}(1)$	}	both $h_{+'} h_{-}$ also @ $w \neq 1$
HPQCD 17B FNAL/MILC 14	[609] [603]	2+1+1 2+1	A A	○ ★	* 0	* *	0 0	 ✓ ✓ 	$\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$	}	only h_{A1} @ $w = 1$

• Fermilab/MILC 2105.14019 : 1st calculation of all SM FFs at $w \neq 1$ (!)

				lin, de	5 7 5	v' 2 _v	and the second s		Ŷ		
Collaboration	Ref.	N_f	qnq	oon oon	- Chi-	finiu i	^t enc	h_{e_d}	w = 1 form		
HPQCD 15, HPQCD 17[605 FNAL/MILC 15C Atoui 13	5, 607] [604] [601]	2+1 2+1 2	A A A	○ ★ ★	0 0 0	○ ★ ★	0	 ✓ ✓ ✓ 	$\mathcal{G}^{B \to D}(1)$ $\mathcal{G}^{B \to D}(1)$ $\mathcal{G}^{B \to D}(1)$	}	both $h_{+'} h_{-}$ also @ $w \neq 1$
HPQCD 17B FNAL/MILC 14	[609] [603]	2+1+1 2+1	A A	○ ★	* 0	* *	0 0	 ✓ ✓ 	$\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$	}	only h_{A1} @ $w = 1$

- Fermilab/MILC 2105.14019 : 1st calculation of all SM FFs at $w \neq 1$ (!)
- JLQCD on-going : an independent calculation of all SM FFs at w ≠ 1 two independent calculations w/ very different systematics

 $B \rightarrow D^{(*)} \ell v$ FFs : review by Flavor Lattice Averaging Group 2111.09849

Collaboration	Rof	\mathcal{N}_{c}	oubli.	Ontinu	hiral	Inite C.	enorm	leavy g	w = 1 form		
	Itel.	1 v f	~	0	0	~	~	•			
HPQCD 15, HPQCD 17[605	, 607]	2+1	А	0	0	0	0	\checkmark	$\mathcal{G}^{B \to D}(1)$	٦	both $h_{+'}$ h_{-}
FNAL/MILC 15C	[604]	2 + 1	А	\star	0	*	0	\checkmark	$\mathcal{G}^{B \to D}(1)$	5	also $\bigcirc w \neq 1$
Atoui 13	[601]	2	А	*	0	*		✓	$\mathcal{G}^{B \to D}(1)$		
HPQCD 17B	[609]	2+1+1	А	0	*	*	0	\checkmark	$\mathcal{F}^{B \to D^*}(1)$	Z	only h_{A1}
FNAL/MILC 14	[603]	2 + 1	А	*	0	*	0	\checkmark	$\mathcal{F}^{B \to D^*}(1)$	5	@ <i>w</i> = 1

- Fermilab/MILC 2105.14019 : 1st calculation of all SM FFs at $w \neq 1$ (!)
- JLQCD on-going : an independent calculation of all SM FFs at w ≠ 1 two independent calculations w/ very different systematics

this talk : $B \rightarrow D^* \ell v$, JLQCD's update & comparison w/ Fermilab/MILC

similar simulation parameters

-
$$N_f = 2 + 1$$

- $a^{-1} \leq 4.5 \text{ GeV} \sim m_b$

- $M_{\pi} \gtrsim 200 \text{ MeV} \Leftrightarrow D^* \rightarrow D\pi$ - $M_{\pi}L \gtrsim 4$
 - + JLQCD: two L's to check FVEs

similar simulation parameters

- $-N_f = 2 + 1$
- $a^{-1} \lesssim 4.5 \text{ GeV} \sim m_b$
- $M_{\pi} \gtrsim 200 \text{ MeV} \iff D^* \rightarrow D\pi$ - $M_{\pi}L \gtrsim 4$
 - + JLQCD : two L's to check FVEs

Fermilab/MILC 2105.14019

Asqtad staggered light quarks

- fast : high statistics
- more $N_f = 4$ ensembles available

similar simulation parameters

- $-N_f = 2 + 1$
- $-a^{-1} \lesssim 4.5 \text{ GeV} \sim m_b$ $M > 200 \text{ MeV} \Leftrightarrow D* -$
- $M_{\pi} \gtrsim 200 \text{ MeV} \iff D^* \rightarrow D\pi$ - $M_{\pi}L \gtrsim 4$

+ JLQCD : two L's to check FVEs

Fermilab/MILC 2105.14019

Asqtad staggered light quarks

- fast : high statistics
- more $N_f = 4$ ensembles available

JLQCD on-going

domain-wall chiral quarks

- no $O(a^{2n+1})$ errors
- simple renormalization

similar simulation parameters

- $N_f = 2 + 1$
- $a^{-1} \lesssim 4.5 \text{ GeV} \sim m_b$
- $M_{\pi} \gtrsim 200 \text{ MeV} \iff D^* \rightarrow D\pi$ - $M_{\pi}L \gtrsim 4$

+ JLQCD: two L's to check FVEs

Fermilab/MILC 2105.14019

Asqtad staggered light quarks

- fast : high statistics
- more $N_f = 4$ ensembles available

JLQCD on-going

domain-wall chiral quarks

- no $O(a^{2n+1})$ errors
- simple renormalization

heavy quarks on the lattice

Fermilab/MILC

- c and b quarks in EFT approach
- Fermilab interpretation of Wilson action
- directly simulate physical $m_{b,phys}$
- need matching of action and op.s

heavy quarks on the lattice

Fermilab/MILC

- c and b quarks in EFT approach
- Fermilab interpretation of Wilson action
- directly simulate physical $m_{b,phys}$
- need matching of action and op.s

JLQCD

relativistic approach

- chiral symmetric action for all quarks
- no matching, automatic renormalization
- simulate $m_b \leq 0.7a^{-1}$, extrapolate to $m_{b,\text{phys}}$

heavy quarks on the lattice

Fermilab/MILC

- c and b quarks in EFT approach
- Fermilab interpretation of Wilson action
- directly simulate physical $m_{b,phys}$
- need matching of action and op.s

JLQCD

relativistic approach

- chiral symmetric action for all quarks
- no matching, automatic renormalization
- simulate $m_b \leq 0.7a^{-1}$, extrapolate to $m_{b,\text{phys}}$

independent calc.s w/ very different systematics \Rightarrow solid prediction

continuum + chiral extrap. - JLQCD

NLO HMChPT (Randall-Wise '92, Savage '01) + polynomial corrections

$$\frac{h_{A_{l}}(w)}{\eta_{A_{l}}} = c + \frac{g_{D^{*}D\pi}^{2}}{16\pi^{2}f_{\pi}^{2}} \Delta_{c}^{2} b_{\log} \overline{F}_{\log} \left(M_{\pi}, \Delta_{c}, \Lambda_{\chi}\right) + c_{w} \left(w-1\right) + c_{b} \left(w-1\right) \varepsilon_{b} + c_{\pi} \xi_{\pi} + c_{\eta s} \xi_{\eta s} + c_{a} \xi_{a} + c_{am_{b}} \xi_{amb} + d_{w} \left(w-1\right)^{2}$$

continuum + chiral extrap. - JLQCD

NLO HMChPT (Randall-Wise '92, Savage '01) + polynomial corrections

$$\frac{h_{A_{l}}(w)}{\eta_{A_{l}}} = c + \frac{g_{D^{*}D\pi}^{2}}{16\pi^{2}f_{\pi}^{2}}\Delta_{c}^{2}b_{\log}\overline{F}_{\log}\left(M_{\pi},\Delta_{c},\Lambda_{\chi}\right)
+ c_{w}\left(w-1\right) + c_{b}\left(w-1\right)\varepsilon_{b} + c_{\pi}\xi_{\pi} + c_{\eta s}\xi_{\eta s} + c_{a}\xi_{a} + c_{am_{b}}\xi_{amb} + d_{w}\left(w-1\right)^{2}
\varepsilon_{b} = \frac{\overline{\Lambda}}{2m_{b}}, \quad \xi_{\pi} = \frac{M_{\pi}^{2}}{\left(4\pi f_{\pi}\right)^{2}}, \quad \xi_{\eta s} = \frac{M_{\eta s}^{2}}{\left(4\pi f_{\pi}\right)^{2}}, \quad \xi_{a} = \left(a\Lambda_{\text{QCD}}\right)^{2}, \quad \xi_{a} = \left(am_{b}\right)^{2}$$

continuum + chiral extrap. - JLQCD

NLO HMChPT (Randall-Wise '92, Savage '01) + polynomial corrections

$$\frac{h_{A_{l}}(w)}{\eta_{A_{l}}} = c + \frac{g_{D^{*}D\pi}^{2}}{16\pi^{2}f_{\pi}^{2}}\Delta_{c}^{2}b_{\log}\overline{F}_{\log}\left(M_{\pi},\Delta_{c},\Lambda_{\chi}\right)
+ c_{w}\left(w-1\right) + c_{b}\left(w-1\right)\varepsilon_{b} + c_{\pi}\xi_{\pi} + c_{\eta s}\xi_{\eta s} + c_{a}\xi_{a} + c_{am_{b}}\xi_{amb} + d_{w}\left(w-1\right)^{2}
\varepsilon_{b} = \frac{\overline{\Lambda}}{2m_{b}}, \quad \xi_{\pi} = \frac{M_{\pi}^{2}}{\left(4\pi f_{\pi}\right)^{2}}, \quad \xi_{\eta s} = \frac{M_{\eta s}^{2}}{\left(4\pi f_{\pi}\right)^{2}}, \quad \xi_{a} = \left(a\Lambda_{\text{QCD}}\right)^{2}, \quad \xi_{a} = \left(am_{b}\right)^{2}$$

- singular correlation matrix \Rightarrow SVD cut, shrinkage \Leftrightarrow Fermilab/MILC
- one-loop radiative correction η_X is explicitly included (Neubert '92)
- $g_{D^*D\pi} = 0.53(8)$ (Fermilab/MILC '14) \Rightarrow small systematic error
- ξ expansion : better convergence for light quark obs. (JLQCD '08)
- $O((w-1)/m_b)$ for h_{A1} , $h_+ \Leftrightarrow$ Luke's theorem '90 ; include $O(1/m_b^2)$

FF comparison : h_{A1}

FF comparison : h_{A1}

- reasonable consistency in spite of very different systematics
- JLQCD: slightly narrower w, significant $a \neq 0$, slightly gentle slope (?)

- reasonable consistency also for these FFs
- JLQCD: slightly gentle slope for h_V ?

 M_{π} dependence

- mild dependence
 - suppressed log
 - no valence π
- similar for other w, FFs

w/ $H^{(Q)}$, π

$$\sqrt{\Delta^2 - M_{\pi}^2} \ln \left[\frac{\Delta + \sqrt{\Delta^2 - M_{\pi}^2}}{\Delta - \sqrt{\Delta^2 - M_{\pi}^2}} \right]$$
$$\Delta = M_{D^*} - M_D$$

M_m dependence

- mild dependence
 - suppressed log
 - no valence π
- similar for other w, FFs

w/
$$H^{(Q)}$$
, π

$$\sqrt{\Delta^2 - M_{\pi}^2} \ln \left[\frac{\Delta + \sqrt{\Delta^2 - M_{\pi}^2}}{\Delta - \sqrt{\Delta^2 - M_{\pi}^2}} \right]$$
$$\Delta = M_{D^*} - M_D$$

- $D^* \rightarrow D\pi \Rightarrow$ concave structure < statistical accuracy
- mild dependence \Rightarrow chiral extrapolation under control

m_b and a dependences

$$\varepsilon_{b} = \frac{\overline{\Lambda}}{2m_{b}} = \frac{\overline{\Lambda}}{M_{\eta_{b}}}$$

$$\overline{\Lambda} = 0.5 \text{GeV}$$

• two $a \neq 0$ effects

$$(a\Lambda)^{2n}, (am_c)^{2n}$$

- $(am_b)^{2n}$
- consistency w/ QCDSR ?
 Gambino-Mannel-Uraltsev '10

m_b and *a* dependences

$$\varepsilon_{b} = \frac{\overline{\Lambda}}{2m_{b}} = \frac{\overline{\Lambda}}{M_{\eta_{b}}}$$

$$\overline{\Lambda} = 0.5 \text{GeV}$$

• two $a \neq 0$ effects

$$(a\Lambda)^{2n}, (am_c)^{2n}$$

- $(am_b)^{2n}$
- consistency w/ QCDSR ?
 Gambino-Mannel-Uraltsev '10

- turned out to be a few % effects
- reasonably controlled extrapolation in ε_b and $a \Leftrightarrow \text{smaller } a$?

- h_{A1} : largest uncertainties statistics and discretization but 1-2 % mild a, m_q dependences $\Rightarrow O(1)$ or less $c_X \Rightarrow$ controlled extrapolation
- other FFs : larger and more dominant statistical error

synthetic data @ a=0 and physical m_a 's

synthetic data @ a=0 and physical m_a 's

- relativistic FFs from HQET FFs
- Fermilab/MILC : w = 1.03, 1.07, 1.17 (more data available on arXiv)
- JLQCD : w = 1.000, 1.050, 1.100 (f), 1.030, 1.065, 1.100 (other FFs)

Boyd-Grinstein-Lebed parameterization '97

$$F(w) = \frac{1}{P_F(z)\phi_F(z)} \sum_{n}^{n_F} a_n^F z^n, \quad z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}} \qquad \underbrace{\frac{q^2}{(M_B + M_D)^2}}_{(M_B - M_D)^2} \qquad \underbrace{\frac{z}{(M_B - M_D)^2}}_{(M_B - M_D)^2}$$

Boyd-Grinstein-Lebed parameterization '97

$$F(w) = \frac{1}{P_F(z)\phi_F(z)} \sum_{n}^{n_F} a_n^F z^n, \quad z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}} \qquad \underbrace{\frac{q^2}{(M_B + M_{D^*})^2}}_{(M_B - M_{D^*})^2} \qquad \underbrace{\frac{z}{(M_B - M_{D^*})^2}}_{(M_B - M_{D^*})^2}$$

- JLQCD : $w = [1.0, 1.1], q^2 = [13.0, 10.7] \rightarrow z = [0.000, 0.012]$
- Baschke factors $P_{F'}$ outer functions ϕ_F : same as Bigi-Gambino-Schacht '17 \Leftrightarrow hadronic susceptibilities χ_T from lattice QCD : Martinelli et al. '21
- w/ a kinematical constraint $\mathcal{F}_1(1) = (M_B M_{D^*}) f(1)$
- JLQCD : w/o unitarity constraint
- employ quadratic fits : $n_{g'} n_{f'} n_{f_1} n_{f_2} = 2$
- JLQCD : preliminary

- consistent within 2σ or so in spite of very different systematics
- JLQCD tends to favor smaller normalization and slope for f and g (h_{A1} and h_V)
- JLQCD's analysis together w/ experimental data in progress

- $\approx 2\sigma$ consistency also for \mathcal{F}_1 and \mathcal{F}_2
- data for \mathcal{F}_2 available $\Rightarrow B \rightarrow D^{(*)} \tau v, R(D^*)$

Fermilab/MILC : impact on SM test

simultaneous fit to lat.+exp. data

 $|V_{cb}| = 38.57(0.78) \times 10^3$

- consistent w/ previous exclusive calc.
 - \Rightarrow |V_{cb}| tension still remains ...
- slight tension in slope b/w lat. & exp.??

Fermilab/MILC : impact on SM test

simultaneous fit to lat.+exp. data

$R(D^{(*)})$ from lattice QCD, and + exp.

- consistent w/ previous exclusive calc.
 - \Rightarrow |V_{cb}| tension still remains ...
- slight tension in slope b/w lat. & exp.??

- purely theoretical estimate
- *c.f.* w/ exp. 0.2484(13)

beyond SM

 $B \rightarrow D\ell v \text{ tensor FF}$ (M. Faur [Paris ENS, internship] + Kou + JLQCD)

$$\left\langle D\left(p'\right) \middle| \mathbf{T}_{\mu\nu} \middle| B\left(p\right) \right\rangle = i \left(\nu'^{\mu} \nu^{\nu} - \nu'^{\nu} \nu^{\mu} \right) \mathbf{h}_{T} \left(\mathbf{w} \right)$$

- $\checkmark\,$ extraction of tensor FF
- ✓ continuum chiral extrapolation
- ✓ systematic uncertainties
- renormalization in progress
 T. Ishikawa @ Lattice
- 10% stat. and 10% sys. errors
- consistent w/ phenomenology

useful input for BSM interpretation of B anomalies

recent progress on $B \rightarrow D^{(*)} \ell v$ FFs from lattice QCD

- two independent calculations of $B \rightarrow D^* \ell v$ FFs @ w > 1
 - Fermilab/MILC 2105.14019; JLQCD on-going
 - very different systematics : EFT and relativistic approaches
 - mild $a_{i} m_{a}$ dependences \Rightarrow controlled extrapolation
 - $\approx 2\sigma$ consistency in FFs
 - can be improved
 - + Fermillab/MILC : more realistic N_f =4 ensembles
 - + JLQCD : higher statistics / finer lattices
- BSM FFs for NP model interpretation of B anomalies
 - JLQCD $B \rightarrow D\ell v$ tenor FF / expect more for the future