$B_{(s)} \rightarrow D_{(s)}^{(*)}$ and B_c Decays in Lattice QCD

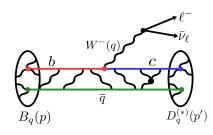
Judd Harrison, University of Glasgow

CKM - November 2021

Background

Many interesting $B_{(s,c)}$ semileptonic decays currently under active investigation

- $ightharpoonup B_c o D_s \ell^+ \ell^- \text{ and } B_c o D \ell \nu^1$
- ▶ $B \to \pi/K$, $B_s \to K$ (see later talk by Andrew Lytle)
- ▶ Here, focus on $b \to c$ decays: $B_{(s)} \to D_{(s)}^{(*)} \ell \nu$, $B_c \to J/\psi \ell \nu$
 - Complementary determinations of V_{cb} ,
 - Comparison of observables sensitive to lepton flavor universality violation (LFUV) to experiment



Kinematic variables:

$$q^{2} = (p - p')^{2}$$

$$w = \frac{p' \cdot p}{M_{B_{q}} M_{D_{q}^{(*)}}}$$

$$z = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}}$$

¹2111.06782

$$P \rightarrow P: B_{(s)} \rightarrow D_{(s)}\ell\nu$$

$$rac{d\Gamma}{dq^2} = \mathcal{N}(q^2) imes \mathcal{G}^2(q^2) |V_{cb}|^2$$

where $\mathcal{G}(q^2)$ depends on nonperturbative QCD matrix elements, expressed in terms of form factors:

$$\mathcal{G}^{2}(q^{2}) = \left(1 + \frac{m_{\ell}^{2}}{2q^{2}}\right) M_{B_{(s)}}^{2} |p_{D_{(s)}}|^{2} f_{+}^{(s)2}(q^{2}) + \frac{3m_{\ell}^{2}}{8q^{2}} (M_{B_{(s)}}^{2} - M_{D_{(s)}^{2}})^{2} f_{0}^{(s)2}(q^{2})$$

- ▶ Theoretical predictions boil down to computing form factors
 - 2 form factors within the Standard Model, only need $f_+^{(s)}$ for $\ell=e,\mu$
 - 1 additional tensor form factor for New Physics
- ▶ V_{cb} can be determined by comparing experimental value of $\eta_{\rm EW} \mathcal{G}(q_{\rm max}^2) |V_{cb}|$ to lattice calculations of $\mathcal{G}(q_{\rm max}^2)$
- ightharpoonup Measurements of $R(D_{(s)})$ provide sensitivity to LFUV

$$R(D_{(s)}) = \frac{\Gamma\left(B_{(s)} \to D_{(s)}\tau\nu_{\tau}\right)}{\Gamma\left(B_{(s)} \to D_{(s)}\mu\nu_{\mu}\right)}$$

$$P \rightarrow V: B_{(s)} \rightarrow D_{(s)}^* \ell \nu, B_c \rightarrow J/\psi \ell \nu$$

Pseudoscalar to vector decay has more complicated structure in the SM:

$$\frac{d\Gamma}{dq^2} = \chi(q^2) \times \mathcal{F}^2(q^2) |V_{cb}|^2$$

$$\mathcal{F}^{2}(q^{2}) = \left[\left(1 + \frac{m_{\ell}^{2}}{2q^{2}} \right) \left(H_{+}^{2}(q^{2}) + H_{-}^{2}(q^{2}) + H_{0}^{2}(q^{2}) \right) + \frac{3m_{\ell}^{2}}{2q^{2}} H_{t}^{2}(q^{2}) \right]$$

Helicity amplitudes expressed in terms of form factors

$$\{H_{+}(q^{2}), H_{-}(q^{2}), H_{0}(q^{2})\} \leftrightarrow \{A_{1}(q^{2}), A_{2}(q^{2}), V(q^{2})\}$$

 $H_{t}(q^{2}) \propto A_{0}(q^{2})$

- Theoretical predictions more difficult for vector meson final state:
 - 4 form factors within the Standard Model
 - 3 additional tensor form factor for New Physics
- $ightharpoonup V_{cb}$ compare experimental value of $\eta_{\rm EW} \mathcal{F}(q_{
 m max}^2) |V_{cb}|$ to lattice calculations of $\mathcal{F}(q_{
 m max}^2)$
 - preferred over $B_{(s)} o D_{(s)}$ due to favorable kinematics near zero-recoil.
- ► R(D*)
 - Sensitive to LFUV
 - Theory for $R(D^*)$ relies on experimental fits + HQET for A_0
 - On the lattice, typically use unphysically heavy pions and treat $D^* \to D\pi$ resonance using $\chi {\rm PT}$
- ▶ Lattice calculation of $B_s \to D_s^*$ and $B_c \to J/\psi$ FFs easier
 - Computational cost of propagators for c < s << u/d
 - $-J/\psi$ and D_s^* are 'gold-plated'

Overview of Lattice Results

- ▶ SM FFs for $B \to D\ell\nu$ available away from zero recoil²
- SM FFs for $B_s \to D_s \ell \nu$ now available across the full kinematic range, tensor FF available close to zero-recoil, with work also ongoing³
- ▶ SM FFs for $B \to D^*\ell\nu$ recently became available from Fermilab-MILC away from zero-recoil⁴, with lattice calculations also underway by JLQCD as well as HPQCD.
- ▶ SM FFs for $B_s \to D_s^* \ell \nu$ and $B_c \to J/\psi \ell \nu$ available across full kinematic range from HPQCD⁵

²e.g. 1503.07237,1505.03925

³1906.00701,1310.5238,2110.10061

^{42105.14019}

⁵2105.11433

Current Results

	Lattice only	$Lattice + Exp^6$	Experiment	Tension
R(D)	$0.293(4)^7$	0.299(3)	0.340(30)	1.4σ
$R(D^*)$	0.265(13)	0.2483(13)	0.295(14)	3.3σ
$R(D_s)$	0.299(5)	_	_	_
$R(D_s^*)$	0.244(8)	_	_	_
$R(J/\psi)$	0.258(4)	_	$0.71(25)^8$	1.8σ

HFLAV average, Fermilab-MILC, HPQCD.

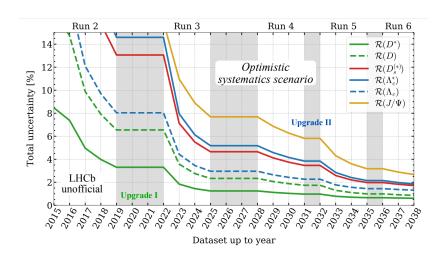
	V_{cb}	
$B \to D$	$39.58(94)_{\mathrm{exp}}(37)_{\mathrm{th}} imes 10^{-3}$	HFLAV
$B o D^*$	$38.76(42)_{\rm exp}(55)_{\rm th} imes 10^{-3}$	
$B_s o D_s^{(*)}$	$42.3(1.2)_{\rm exp}(1.2)_{\rm th} imes 10^{-3}$	LHCb (2001.03225)
$B \to X_c \ell \nu$	$42.16(51) imes 10^{-3}$	Bordone et al.(2107.00604)

⁶Assumes new physics only possible in semitauonic mode

⁷FLAG review

⁸LHCb-1711.05623

Experimental Outlook



- ▶ Need precise SM form factors across full kinematic range
 - Resolve discrepancy between inclusive and exclusive determinations of V_{cb}
 - Make first principles predictions for $R(D_{(s)}^*)$ independent of experimental measurements
- ▶ Need tensor form factors to disentangle possible new physics effects

$b \rightarrow c$ Pseudoscalar to Vector Form Factors

In the standard model $\mathcal{F}(q^2)$ is a simple function of the form factors, $A_1(q^2)$, $A_0(q^2)$, $A_2(q^2)$ and $V(q^2)$, defined in terms of matrix elements. For example, for $B_s \to D_s^* \ell \nu$:

$$\begin{split} \langle D_{s}^{*}(p',\lambda) | \bar{c}\gamma^{\mu}b | B_{s}^{0}(p) \rangle &= \frac{2iV(q^{2})}{M_{B_{s}} + M_{D_{s}^{*}}} \varepsilon^{\mu\nu\rho\sigma} \epsilon_{\nu}^{*}(p',\lambda) p'_{\rho}p_{\sigma} \\ \langle D_{s}^{*}(p',\lambda) | \bar{c}\gamma^{\mu}\gamma^{5}b | B_{s}^{0}(p) \rangle &= 2M_{D_{s}^{*}} A_{0}(q^{2}) \frac{\epsilon^{*}(p',\lambda) \cdot q}{q^{2}} q^{\mu} \\ &+ (M_{B_{s}} + M_{D_{s}^{*}}) A_{1}(q^{2}) \left[\epsilon^{*\mu}(p',\lambda) - \frac{\epsilon^{*}(p',\lambda) \cdot q}{q^{2}} q^{\mu} \right] \\ &- A_{2}(q^{2}) \frac{\epsilon^{*}(p',\lambda) \cdot q}{M_{B_{s}} + M_{D_{s}^{*}}} \left[p^{\mu} + p'^{\mu} - \frac{M_{B_{s}}^{2} - M_{D_{s}^{*}}^{2}}{q^{2}} q^{\mu} \right] \end{split}$$

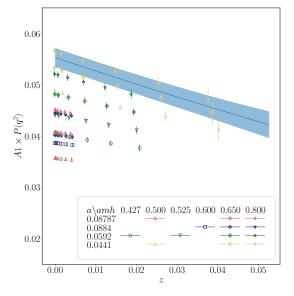
Form Factors Across the Full q² Range with Lattice QCD⁹

- Use HISQ action for all quarks fully relativistic, small discretisation effects, nonperturbatively normalised currents
- Compute form factors at multiple daughter momenta, using multiple heavy masses ranging up to close to the physical mass
- ► Fit the form factor data including *am_h* discretisation effects, physical heavy mass dependence, and lattice spacing dependence
 - Here we first convert to z space, e.g.

$$P(q^2) \times A_1(q^2) = \sum_{n=0}^{3} a_n z^n(q^2) \mathcal{N}_n$$

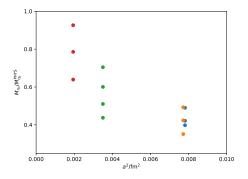
$$a_n = \sum_{i,k,l=0}^{3} b_n^{jkl} \left(\frac{2\Lambda_{\text{QCD}}}{M_{\eta_h}} \right)^j \left(\frac{am_c^{\text{val}}}{\pi} \right)^{2k} \left(\frac{am_h^{\text{val}}}{\pi} \right)^{2l}$$

 $⁹B_s \to D_s^*:2105.11433, B_c \to J/\psi:2007.06957$



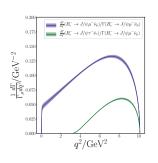
 $P(q^2) \times A_1$ for $B_c \to J/\psi$, plotted in z space, showing the physical continuuum form factor as a blue band

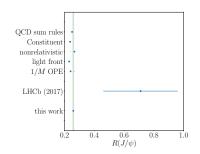
We use the second generation MILC HISQ gauge configurations with u/d, s and c quarks in the sea.



▶ The subset of configurations we use include physical u/d quark masses, and have small lattice spacings allowing us to come very close to the physical b mass.

$B_c \to J/\psi$ Results - 2007.06956, 2007.06957



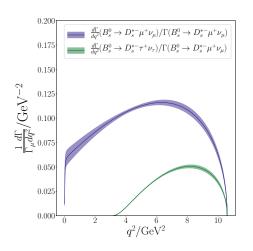


$$R(J/\psi) = 0.2582(38)$$

 $\Gamma(B_c^- \to J/\psi \mu^- \bar{\nu}_\mu)/\eta_{\rm EW}^2 |V_{cb}|^2 = 1.73(12) \times 10^{13} s^{-1}$

- ▶ Experimental results for $B_c \to J/\psi$ are currently much less precise than our lattice results, but expect this to improve in future.
- In addition to $R(J/\psi)$, other observables and ratios may be constructed with high precision from our form factor results
 - Can study the effect of NP couplings full details in 2007.06956

$B_s \rightarrow D_s^*$ Results - 2105.11433



$$\begin{split} R(D_s^*) &= 0.244(8)_{\rm latt}(4)_{\rm EM} \\ \Gamma(B_s^0 \to D_s^{*-} \mu^+ \nu_\mu)/\eta_{\rm EW}^2 |V_{cb}|^2 &= 2.06(21) \times 10^{13} s^{-1} \end{split}$$

$$R(D_s^*), V_{cb}...$$

Many new lattice predictions for $B_s \to D_s^*$ quantities:

	This work	Exp. ¹⁰	$B o D^{* \ 11}$
$rac{\Gamma(B_s^0{ o}D_s^-\mu^+ u_\mu)}{\Gamma(B_s^0{ o}D_s^{*-}\mu^+ u_\mu)}$	0.444(49)	0.464(45)	0.457(23)
$R(D_{(s)}^*)$	0.244(8)	-	0.2483(13)
$F_L^{(')}$	0.448(22)	_	0.464(10)
$\mathcal{A}_{\lambda_{ au}} = -P_{ au}$	0.514(18)	_	0.496(15)

Can also infer a total experimental rate Γ from LHCb analysis of V_{cb} in 2001.03225, we can use this with our results to give a value of V_{cb}

$$|V_{cb}| = 43.0(2.1) \times 10^{-3}$$

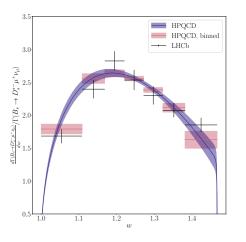
Consistent with the result using lattice data only at zero-recoil.

¹⁰LHCb 2001.03225

¹¹HFLAV 1909.12524, Bordone et. al 1908.09398

$B_s \to D_s^*$ Shape

We can compare the binned experimental results 12 for the $B_s o D_s^*$ shape to our results



$$\chi^2/{
m dof} = 1.8$$

¹²LHCb:2003.08453

Summary

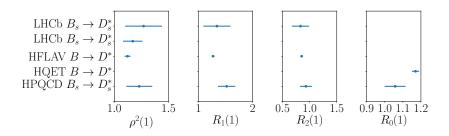
- ▶ Published lattice results for $B_c \to J/\psi$ form factors, corresponding experimental measurements are currently imprecise.
 - Experimental results for $B_c \to J/\psi$ decays are expected to become more precise
- ▶ Results for the $B_s \to D_s^*$ form factors now on arXiv
 - Model independent determinations of $R(D_s^*)$ and other observables
 - Model independent determination of $|V_{cb}|$, though ideally would use experimental results directly
- ▶ Work on $B \rightarrow D^*$, including Tensor form factors, now underway

Thanks for listening!

Backup Slides

$B_s \to D_s^*$ Shape Parameters

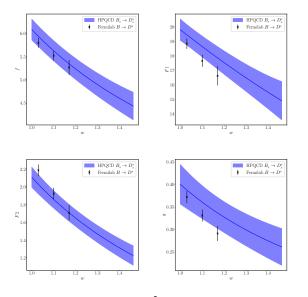
In the CLN parameterisation, the shape of the decay for massive leptons in the SM is fully described by the four parameters ρ^2 , $R_1(1)$, $R_2(1)$ and $R_0(1)$, with ρ^2 , $R_1(1)$, $R_2(1)$ determined from experiment and $R_0(1)$ known to NLO in HQET¹³



• Our results are broadly consistent with the measured values of ρ^2 , $R_1(1)$ and $R_2(1)$ for $B_s \to D_s^*$, and with the NLO HQET value of $R_0(1)$.

¹³LHCb:2001.03225+2003.08453, HFLAV:1909.12524, HQET:1703.05330

Comparison to Fermilab-MILC $B \rightarrow D^*$ Form Factors



Comparison done in helicity-basis: $\chi^2/\text{dof} = 1.8$