### CKM elements measurements with semi-leptonic B decays at LHCb

#### Basem Khanji, on behalf of LHCb collaboration

Tu Dortmund University

#### CKM, Melbourne, November 25, 2021







### Outline

- $\mathbf{b} \rightarrow \mathbf{u}$  decays @ LHCb
  - $|V_{ub}|/|V_{cb}|$  with  $B_s^0 \rightarrow K^- \mu^+ \nu_\mu$  [Phys. Rev. Lett. 126 (2021) 081804]
- $\mathbf{b} \rightarrow \mathbf{c}$  decays @ LHCb
  - $|V_{\rm cb}|$  with  ${\rm B_s^0} 
    ightarrow {\rm D_s^{(*)-}} \mu^+ \nu_\mu$  [Phys. Rev. D101 (2020) 072004])

## $|V_{\rm ub}|, |V_{\rm cb}|$ : introduction

- +  $|\textit{V}_{ub}|,|\textit{V}_{cb}|\text{:}$  coupling between b and u (c) quarks, fundamental to constrain SM
- Complementary experimental approaches:
  - Inclusive decays: clean, only B-factories, large backgrounds
  - Exclusive decays: theory input, LHCb & B-factories, backgrounds under control
- HFLAV(2019): Combine all exclusive measurements from LHCb, BaBar and Belle:  $|V_{\rm ub}| = (3.49 \pm 0.13) \times 10^{-3} \quad , \quad |V_{\rm cb}| = (39.25 \pm 0.56) \times 10^{-3}$
- Inclusive & exclusive measurements are in disagreement ( $\sim 3\sigma$ )



## $|m{V}_{ m ub}|/|m{V}_{ m cb}|$ with ${ m B_s^0}\! ightarrow{ m K}^-\mu^+ u_\mu$

### [Phys. Rev. Lett. 126 (2021) 081804]

 $|V_{
m ub}|/|V_{
m cb}|$  in  ${
m B}^0_{
m s} o {
m K}^- \mu^+ 
u_\mu$  [Phys. Rev. Lett. 126 (2021) 081804]

• Measure of BRs ratio of  $B^0_s \rightarrow K^- \mu^+ \nu_\mu$  &  $B^0_s \rightarrow D^-_s \mu^+ \nu_\mu$ 



- Convert to  $|V_{
  m ub}|/|V_{
  m cb}|$ : requires calculations of Form Factors
- Theory input: Complementary approaches, decay rates predicted as a function of  $q^2$  ( $\mu\nu$  invariant mass)
- Split in two  $q^2$  regions for  $B^0_s \rightarrow K^- \mu^+ \nu_\mu \ (q^2{}_{B^0_s \rightarrow K^- \mu^+ \nu_\mu} < (>)7 \, \text{GeV}^2)$

• 
$$B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$$
: LCSR(precise at low  $q^2$ ) & LQCD(precise at high  $q^2$ )

•  $B_s^0 \rightarrow D_s^- \mu^+ \nu_{\mu}$ : LQCD(precise over full  $q^2$  spectrum)

## $|\textit{V}_{ub}|/|\textit{V}_{cb}|$ @ LHCb: Strategy [Phys. Rev. Lett. 126 (2021) 081804]

- Analysis requires  $q^2$  reconstruction:
  - $1 \ {\rm Infer} \ {\it P}_{\nu} \ {\rm from} \ {\rm B}^0_{\rm s} \ {\rm topology} \rightarrow {\rm two-fold} \\ {\rm ambiguity} \\$
  - 2 Use linear regression (JHEP 02 (2017) 021) to choose correct  $P_{\nu}$  solution

• 
$$B_s^0 \to K^- \mu^+ \nu_\mu$$
 &  $B_s^0 \to D_s^- \mu^+ \nu_\mu$ 

- Fit data using "corrected mass"
- $M_{corr} = \sqrt{M_{X\mu}^2 + p_\perp^2 + p_\perp}$
- Similar vetoes to select/reconstruct  $B^0_s \rightarrow K^- \mu^+ \nu_\mu \& B^0_s \rightarrow D^-_s \mu^+ \nu_\mu$

• Use inclusive 
$$D_s^- \to K^+ K^- \pi^-$$
 decays



Yields:  $B^0_s \to K^- \mu^+ \nu_\mu \& B^0_s \to D^-_s \mu^+ \nu_\mu$  [Phys. Rev. Lett. 126 (2021) 081804]

- Binned likelihood fit to  $B_s^0$  corrected mass
- $N_{\rm B_s^0 \to D_s^- \mu^+ \nu_{\mu}} = 201450 \pm 5200$
- $N_{\rm B_s^0 \to K^- \mu^+ \nu_\mu (low)} = 6922 \pm 285$
- $N_{\rm B_s^0 \to K^- \mu^+ \nu_{\mu}(high)} = 6399 \pm 370$



### Systematics breakdown [Phys. Rev. Lett. 126 (2021) 081804]

| Uncertainty                            | $\frac{\mathcal{B}(B_{s} \to K\mu\nu)}{\mathcal{B}(B_{s} \to D_{s}\mu\nu)} \ [\%]$ |                  |                     |            |  |
|----------------------------------------|------------------------------------------------------------------------------------|------------------|---------------------|------------|--|
|                                        | No $q^2$ sel.                                                                      | low $q^2$        | high q <sup>2</sup> |            |  |
| Tracking                               | 2.0                                                                                | 2.0              | 2.0                 | • •        |  |
| Trigger                                | 1.4                                                                                | 1.2              | 1.6                 | • 3        |  |
| Particle ID                            | 1.0                                                                                | 1.0              | 1.0                 | S          |  |
| $m_{ m corr}$ error                    | 0.5                                                                                | 0.5              | 0.5                 | $\epsilon$ |  |
| Isolation                              | 0.2                                                                                | 0.2              | 0.2                 | • •        |  |
| Charged BDT                            | 0.6                                                                                | 0.6              | 0.6                 | - 1        |  |
| Neutral BDT                            | 1.1                                                                                | 1.1              | 1.1                 | ti         |  |
| q <sup>2</sup> migration               |                                                                                    | 2.0              | 2.0                 | la         |  |
| arepsilon gen& reco                    | 1.2                                                                                | 1.6              | 1.6                 | S          |  |
| Fit template                           | $^{+2.3}_{-2.9}$                                                                   | $^{+1.8}_{-2.4}$ | $^{+3.0}_{-3.4}$    |            |  |
| Total                                  | $^{+4.0}_{-4.3}$                                                                   | $^{+4.3}_{-4.5}$ | $^{+5.0}_{-5.3}$    |            |  |
| $\mathcal{B}(D_s^- \to K^- K^+ \pi^-)$ | 2.8                                                                                | 2.8              | 2.8                 |            |  |

• Similar contribution to systematic budget from fit and  $\epsilon$ 

 Multiple Systematic sources for fit and 
 *e* are reducible with larger data sets and simulation samples

## Results: $|V_{\rm ub}|/|V_{\rm cb}|$ ingredients [Phys. Rev. Lett. 126 (2021) 081804]

$$\frac{\mathcal{B}(B_{s}^{0} \to K^{-}\mu^{+}\nu_{\mu})_{q^{2} < 7}}{\mathcal{B}(B_{s}^{0} \to D_{s}^{-}\mu^{+}\nu_{\mu})_{Full q^{2}}} = (1.66 \pm 0.08(stat) \pm 0.07(syst) \pm 0.05(D_{s})) \times 10^{-3}$$

$$\frac{\mathcal{B}(B_{s}^{0} \to K^{-}\mu^{+}\nu_{\mu})_{q^{2} > 7}}{\mathcal{B}(B_{s}^{0} \to D_{s}^{-}\mu^{+}\nu_{\mu})_{Full q^{2}}} = (3.25 \pm 0.21(stat) \stackrel{+ \ 0.16}{_{-} \ 0.17}(syst) \pm 0.09(D_{s})) \times 10^{-3}$$

$$\frac{\mathcal{B}(B_{s}^{0} \to D_{s}^{-}\mu^{+}\nu_{\mu})_{Full q^{2}}}{\mathcal{B}(B_{s}^{0} \to D_{s}^{-}\mu^{+}\nu_{\mu})_{Full q^{2}}} = (3.25 \pm 0.21(stat) \stackrel{- \ 0.17}{_{-} \ 0.17}(syst) \pm 0.09(D_{s})) \times 10^{-3}$$

JHEP08(2017)112 Phys. Rev. D 100, 034501 (2019) Phys. Rev. D 101, 074513 (2020)  ${\rm FF}_{\rm K}=4.14\pm0.38\,{\rm ps}^{-1}$  ,  ${\rm FF}_{\rm K}=3.23\pm0.46\,{\rm ps}^{-1}$  ,  ${\rm FF}_{\rm D_s}=9.15\pm0.37\,{\rm ps}^{-1}$ 

Results:  $\mathcal{B}(B^0_s \to K^- \mu^+ 
u_\mu)$  [Phys. Rev. Lett. 126 (2021) 081804]

$$\begin{split} \mathcal{B}(B_{\rm s}^0 \to K^- \mu^+ \nu_\mu) &= (1.06 \pm 0.05 ({\rm stat}) \pm 0.04 ({\rm syst}) \pm 0.06 ({\rm ext}) \pm 0.04 ({\rm FF})) \times 10^{-4} \\ |V_{\rm ub}|/|V_{\rm cb}| ({\rm low}) &= 0.0607 \pm 0.0015 ({\rm stat}) \pm 0.0013 ({\rm syst}) \pm 0.0008 ({\rm D_s}) \pm 0.0030 ({\rm FF}) \\ |V_{\rm ub}|/|V_{\rm cb}| ({\rm high}) &= 0.0946 \pm 0.0030 ({\rm stat})^{+0.0024}_{-0.0025} ({\rm syst}) \pm 0.0013 ({\rm D_s}) \pm 0.0068 ({\rm FF}) \end{split}$$



• First observation of the golden channel:  $B^0_s \rightarrow K^- \mu^+ \nu_\mu$ 

• Discrepancy  $|V_{ub}|/|V_{cb}|$ (low): clash in theory predictions  $\rightarrow$  solved when measuring full  $q^2$  shape of  $B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$ 

#### $b \rightarrow c$ transitions @ LHCb

 $|V_{cb}|$  with  $B^0_s 
ightarrow D^{(*)-}_s \mu^+ 
u_\mu$  [Phys. Rev. D101 (2020) 072004]

 $|V_{
m cb}|$  using  ${
m B}^0_{
m s}\!
ightarrow {
m D}^{(*)-}_{
m s} \mu^+ 
u_{\mu}$  [Phys. Rev. D101 (2020) 072004]

- $\bullet\,$  Phys. Rev. D101 (2020),  $3\,{\rm fb}^{-1},$  Run 1 data
- Model the decays with CLN, BGL parametrization to investigate inclusive/exclusive discrepancy
- Using  $B^0 \rightarrow D^{(*)-} \mu^+ \nu_{\mu}$  as input, exctract  $|V_{cb}|$  from:

$$\frac{\mathcal{B}(\mathbf{B}_{\mathrm{s}}^{0}\to\mathbf{D}_{\mathrm{s}}^{(*)-}\mu^{+}\nu_{\mu})}{\mathcal{B}(\mathbf{B}^{0}\to\mathbf{D}^{(*)-}\mu^{+}\nu_{\mu})}\propto\frac{f_{\mathrm{s}}}{f_{\mathrm{d}}}\frac{|V_{\mathrm{cb}}|^{2}\times\mathcal{A}(w,\theta_{\mu},\theta_{D},\chi)}{\mathcal{B}(\mathbf{B}^{0}\to\mathbf{D}^{(*)-}\mu^{+}\nu_{\mu})}$$

• w 4-velocity  $(m_{
m B}^2+m_{
m D}^2-q^2)/(2m_{
m B}m_{
m D})$ 



## Strategy for $|V_{\rm cb}|$ using ${ m B}^0_{ m s} ightarrow{ m D}^{(*)-}_{ m s}\mu^+ u_\mu$ [Phys. Rev. D101 (2020) 072004]

- FF are studied using  $q^2$  variable, however need to deal with missing neutrino(as shown before)
- $|V_{\rm cb}|$  analyses at LHCb adopted an alternative strategy w.r.t to other analyses:
  - Use reconstructed variable correlated with  $q^2$
  - \*  $D_{\rm s}$  Momentum transverse to  $B_{\rm s}^0$  flight direction  $\propto$  form factors
- Fit in corrected mass- $P_{\perp}(D_s)$ :  $|V_{cb}|$  is extracted from signal yields, form factors are accessed through  $P_{\perp}(D_s)$



# Fit ${ m B}^0_{ m s} o { m D}^{(*)-}_{ m s} \mu^+ u_{\mu}$ [Phys. Rev. D101 (2020) 072004]

- Perform two sets of  $\chi^2$  2D fits using templates from simulation for Signal, normalization and physics background
- CLN and BGL from latest Lattice calculations, left floating in the fit



14/1

# $|V_{ m cb}|$ using ${ m B}^0_{ m s}\! ightarrow { m D}^{(*)-}_{ m s} \mu^+ u_{\mu}$ [Phys. Rev. D101 (2020) 072004]

| Parameter                                                                                                                          | Value                                                                                                                                                                                                                                                                                                                                                                                                                   | Parameter                                                                                                       | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c c}  V_{cb}  & [10^{-3}] \\ \mathcal{G}(0) \\ \rho^2(D_s^{-}) \\ \rho^2(D_s^{*-}) \\ R_1(1) \\ R_2(1) \end{array}$ | $\begin{array}{rrrr} 41.4 & \pm 0.6 & (\mathrm{stat}) \pm 1.2 & (\mathrm{ext}) \\ 1.102 \pm 0.034 & (\mathrm{stat}) \pm 0.004 & (\mathrm{ext}) \\ 1.27 & \pm 0.05 & (\mathrm{stat}) \pm 0.00 & (\mathrm{ext}) \\ 1.23 & \pm 0.17 & (\mathrm{stat}) \pm 0.01 & (\mathrm{ext}) \\ 1.34 & \pm 0.25 & (\mathrm{stat}) \pm 0.02 & (\mathrm{ext}) \\ 0.83 & \pm 0.16 & (\mathrm{stat}) \pm 0.01 & (\mathrm{ext}) \end{array}$ | $\begin{array}{c}  V_{cb}  \ [10^{-3}] \\ \mathcal{G}(0) \\ d_1 \\ d_2 \\ b_1 \\ a_0 \\ a_1 \\ c_1 \end{array}$ | $\begin{array}{cccc} 42.3 & \pm 0.8 & (\mathrm{stat}) \pm 1.2 & (\mathrm{ext}) \\ 1.097 & \pm 0.034 & (\mathrm{stat}) \pm 0.001 & (\mathrm{ext}) \\ -0.017 & \pm 0.007 & (\mathrm{stat}) \pm 0.001 & (\mathrm{ext}) \\ -0.26 & \pm 0.05 & (\mathrm{stat}) \pm 0.00 & (\mathrm{ext}) \\ -0.06 & \pm 0.07 & (\mathrm{stat}) \pm 0.01 & (\mathrm{ext}) \\ 0.037 & \pm 0.009 & (\mathrm{stat}) \pm 0.001 & (\mathrm{ext}) \\ 0.28 & \pm 0.26 & (\mathrm{stat}) \pm 0.08 & (\mathrm{ext}) \\ 0.0031 \pm 0.0022 & (\mathrm{stat}) \pm 0.0006 & (\mathrm{ext}) \end{array}$ |

- Compatible extractions of  $|V_{
  m cb}|$  using BGL and CLN parametrization
- Measurement of exclusive  $\mathcal{B}$  using known  $\mathcal{B}(B^0 \to D^{(*)-} \mu^+ \nu_{\mu})$ :

$$\begin{split} \mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} &\to \mathrm{D}^{-}_{\mathrm{s}} \mu^{+} \nu_{\mu}) = (2.49 \pm 0.6(\mathrm{stat}) \pm 0.12(\mathrm{syst}) \pm 0.12(\mathrm{ext})) \times 10^{-2} \\ \mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} &\to \mathrm{D}^{*-}_{\mathrm{s}} \mu^{+} \nu_{\mu}) = (5.38 \pm 0.8(\mathrm{stat}) \pm 0.25(\mathrm{syst}) \pm 0.46(\mathrm{ext})) \times 10^{-2} \end{split}$$

# Systematics on $|V_{\rm cb}|$ using ${\rm B_s^0} \to {\rm D_s^-}\mu^+\nu_\mu$ and ${\rm B_s^0} \to {\rm D_s^{*-}}\mu^+\nu_\mu$ [Phys. Rev. D101

(2020) 072004]

- $|V_{\rm cb}|$  is compatible with the world average
- External inputs (fs/fd) are the dominant systematics source on |V<sub>cb</sub>|
- Modeling Dalitz plane  $D_s^- \rightarrow K^+ K^- \pi^$ is the second dominant source
- Limited knowledge on physical backgrounds



#### Conclusion

- Measure  $|V_{ub}|/|V_{cb}|$  using  $B_s^0 \to K^- \mu^+ \nu_\mu$  and  $B_s^0 \to D_s^- \mu^+ \nu_\mu$  in two  $q^2$  regions
  - First measurement of  $B^0_s \rightarrow K^- \mu^+ \nu_{\mu}$  Branching fraction
  - Discrepancy between low and high  $q^2$  regions
- First measurement of  $|V_{cb}|$  at hadron collider using  $B_s^0$  semileptonic decays
  - Compatible with exclusive world average of  $|V_{
    m cb}|$
- HFLAV 2021: combination of all available exlusive  $|V_{ub}|$ ,  $|V_{cb}|$ ,  $|V_{ub}|/V_{cb}|$  measurements
  - Discrepancy of exclusive versus inclusive measurements of  $|V_{\rm ub}|$  &  $|V_{\rm cb}|$  still hold



Backups

## Systematics breakdown

| Uncertainty                            | $\frac{\mathcal{B}(B_{s} \to K\mu\nu)}{\mathcal{B}(B_{s} \to D_{s}\mu\nu)} \ [\%]$ |                  |                  |  |
|----------------------------------------|------------------------------------------------------------------------------------|------------------|------------------|--|
|                                        | No $q^2$ sel.                                                                      | low $q^2$        | high $q^2$       |  |
| Tracking                               | 2.0                                                                                | 2.0              | 2.0              |  |
| Trigger                                | 1.4                                                                                | 1.2              | 1.6              |  |
| Particle ID                            | 1.0                                                                                | 1.0              | 1.0              |  |
| $m_{ m corr}$ error                    | 0.5                                                                                | 0.5              | 0.5              |  |
| Isolation                              | 0.2                                                                                | 0.2              | 0.2              |  |
| Charged BDT                            | 0.6                                                                                | 0.6              | 0.6              |  |
| Neutral BDT                            | 1.1                                                                                | 1.1              | 1.1              |  |
| $q^2$ migration                        |                                                                                    | 2.0              | 2.0              |  |
| $\varepsilon$ gen& reco                | 1.2                                                                                | 1.6              | 1.6              |  |
| Fit template                           | $^{+2.3}_{-2.9}$                                                                   | $^{+1.8}_{-2.4}$ | $^{+3.0}_{-3.4}$ |  |
| Total                                  | $^{+4.0}_{-4.3}$                                                                   | $^{+4.3}_{-4.5}$ | $^{+5.0}_{-5.3}$ |  |
| $\mathcal{B}(D_s^- \to K^- K^+ \pi^-)$ | 2.8                                                                                | 2.8              | 2.8              |  |

- Transverse component of the neutrino momentum  $p_{\perp}$  is trivial to calculate
- Longitudinal component  $p_{\parallel}$  is determined up to a two-fold ambiguity with the quadratic equation

$$p_{\parallel} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}, \qquad (1)$$

$$a = |2p_{\parallel,X\mu}m_{X\mu}|^{2}, \qquad (1)$$

$$b = 4p_{\parallel,X\mu}(2p_{\perp}p_{\parallel,X\mu} - m_{miss}^{2}), \qquad (2)$$

$$c = 4p_{\perp}^{2}(p_{\parallel,X\mu}^{2} + m_{B_{s}^{0}}^{2}) - |m_{miss}^{2}|^{2}, \qquad (2)$$

$$m_{miss}^{2} = m_{B_{s}^{0}}^{2} - m_{X\mu}^{2}.$$