$B \to \pi/K$ and $B_s \to K$ decays from LQCD

Andrew Lytle (FNAL-MILC collaboration) University of Illinois @ Urbana-Champaign

> 25.11.21 CKM 2021 Melbourne, Australia

Intro & Motivation

- Semileptonic decays are a rich source of information for determining CKM matrix elements.
- Lattice data a critical source of input for testing the CKM paradigm.

• With new experimental and theoretical data on the horizon, these are interesting times!

Outline

- Intro & Motivation
- Review of lattice results (cf FLAG review 2111.09849)
 B → π

- $\blacktriangleright \ B \to K$
- FNAL/MILC all-HISQ semileptonic decays
 - Calculation framework
 - ▶ Preliminary results
- Summary & Outlook

$B \to \pi \ell \nu$

- Process gives the most precise determination of $|V_{ub}|$.
- Challenges:
 - Simulating at physical pion masses / quantifying chiral behavior
 - ▶ Large pion recoil, lattice results best near q_{max}^2
- Particularly difficult calculation requiring significant time/resources.
- Expt'l reconstruction best at low q^2 , resulting in model dependence to bridge low-high q^2 .

Three published results quoted by FLAG, from 2015 or earlier.

- hep-lat/0601021 HPQCD, NRQCD b on $n_f = 2 + 1$ staggered
- 1501.05373 RBC/UKQCD, RHQ b on $n_f=2+1$ domain wall
- 1503.07839 FNAL/MILC, Fermilab b on $n_f = 2 + 1$ staggered (asqtad)

- 1912.09946 RBC/UKQCD extend to a third lattice spacing $a^{-1} \approx 2.77 \text{ GeV w/}$ lightest pion mass $m_{\pi} \approx 234 \text{ MeV}$.
- 1912.02409 JLQCD (new calculation) Moebius domain-wall three lattice spacings $a^{-1} \approx 2.4, 3.6, 4.5$ GeV, lightest $m_{\pi} \approx 225$ MeV. $am_h < 0.7 \rightarrow m_h \approx 2.44m_c$
- 1912.13358 FNAL/MILC Fermilab *b* on staggered HISQ, successor calculation to 1503.07839 asqtad.
- 2111.05184 FNAL/MILC all-HISQ calculation (see part II)

- Three published calculations (2015 and earlier) from HPQCD, RBC/UKQCD, and FNAL/MILC.
- Differing treatments of b and different discretizations, overall agreement in continuum among these.
- Combining results FLAG obtains: $|V_{ub}| = 3.73(14) \times 10^{-3}$
- Several in progress calculations new lattice spacings (RBC/UKQCD), new ensembles (FNAL/MILC), new groups (JLQCD) → expect new results in coming years.

$B_s \to K \ell \nu$

- Computationally similar to $B \to \pi$ (spectator $l \to s$).
- Kaon mass easier to access \rightarrow Systematics related to chiral extrapolation smaller
- $B_s \to K \mu \nu$ measured for the first time by LHCb! 2012.05143
- Normalized by $B_s \to D_s \mu \nu$, gives new constraint on $|V_{ub}|/|V_{cb}|$, competitive with constraint from baryon decay.

$B_s \rightarrow K \ell \nu$ - Lattice results

- 1501.05373 RBC/UKQCD, RHQ b on $n_f = 2 + 1$ domain wall
- 1406.2279,1808.09285 HPQCD, NRQCD b on $n_f = 2 + 1$ staggered (asqtad)
- 1901.02561 FNAL/MILC, Fermilab b on $n_f = 2 + 1$ staggered (asqtad) + ratio with $B_s \rightarrow D_s$

- 1912.09946, 2012.04323 RBC/UKQCD extend to a third lattice spacing $a^{-1} \approx 2.77$ GeV w/ lightest pion mass $m_{\pi} \approx 234$ MeV.
- 1912.13358 FNAL/MILC Fermilab *b* on staggered HISQ, successor calculation to 1901.02561 asqtad.
- 2111.05184 FNAL/MILC all-HISQ calculation (see part II)

• New measurements from LHCb combined with lattice form factor predictions give new CKM constraint on $|V_{ub}|/|V_{cb}|$:

- $B_s \to K$ at low q^2 needed from lattice!
- Total uncertainty can be reduced from the lattice side.

$B \to K\ell\ell$

$B \to K \ell \ell$

- FCNC interaction potentially sensitive to new physics.
- $b \rightarrow s$ transition forbidden at tree level considerably more complicated effective Hamiltonian.
- Most important contributions still come from $\langle K|\mathcal{O}|B\rangle$ matrix elements, with $\mathcal{O} = V, T \to f_0(q^2), f_+(q^2), f_T(q^2)$

- 1306.2384,1306.0434 HPQCD, NRQCD b on $n_f = 2 + 1$ staggered (asqtad), HISQ valence
- 1509.06235,1510.02349 FNAL/MILC, Fermilab b on $n_f = 2 + 1$ staggered (asqtad)

- HPQCD all-HISQ calculation Lattice 2021 https://indico.cern.ch/event/1006302/contributions/4375436/
- 1912.13358 FNAL/MILC Fermilab *b* on staggered HISQ, successor calculation to 1509.06235 asqtad.
- 2111.05184 FNAL/MILC all-HISQ calculation (see part II)

- Important process sensitive to new physics.
- Lattice calculations from HPQCD (2013) and FNAL-MILC (2015), some tension in the tensor form factor.
- Additional contributions from lattice needed!

FNAL-MILC all-HISQ semileptonic decays

Carleton DeTar Elvira Gámiz Steve Gottlieb William Jay Aida El-Khadra Andreas Kronfeld Jim Simone Alejandro Vaquero Treatment of c and especially b quarks challenging in lattice simulation due to lattice artifacts which grow as $(am_h)^n$

- May use an effective theory framework to handle the *b* quark.
 - ▶ Fermilab method, RHQ, OK, NRQCD
 - ▶ Pros: Solves problem w/ am_h artifacts.
 - ▶ Cons: Requires matching, can still have *ap* artifacts.
- Also possible to use relativistic fermion provided a is sufficiently small $am_c \ll 1$, $am_b < 1$.
 - Use improved actions e.g. $\mathcal{O}(a^2) \to \mathcal{O}(\alpha_s a^2)$
 - Pros: Absolutely normalised current, straightforward continuum extrap.
 - Cons: Numerically expensive, extrapolate $m_h \to m_b$.

- Here we simulate *all* quarks with the HISQ action.
- Unified treatment for wide range of $B_{(s)}$ (and $D_{(s)}$) to pseudoscalar transitions

$$\blacktriangleright \ B_{(s)} \to D_{(s)}$$

$$\blacktriangleright \ B_{(s)} \to K$$

 $\blacktriangleright \ B \to \pi$

- Ensembles with (HISQ) sea quarks down to physical at each lattice spacing.
- Enables correlated studies of ff *ratios*.

See our 2021 Lattice proceeding for more details! 2111.05184

- HISQ fermion action.
 - Discretization errors begin at $\mathcal{O}(\alpha_s a^2)$.
 - Designed for simulating heavy quarks (m_c and higher at current lattice spacings).
- Symanzik-improved gauge action, takes into account $\mathcal{O}(N_f \alpha_s a^2)$ effects of HISQ quarks in sea. [0812.0503]
- Multiple lattice spacings down to $\sim 0.042 \pmod{0.03}$ fm.
- Effects of u/d, s, and c quarks in the sea.
- Multiple light-quark input parameters down to physical pion mass.
 - ► Chiral fits.
 - ► Reduce statistical errors.

MILC ensemble parameters

1712.09262

- Use a heavy valence mass h as a proxy for the b quark.
- Work at a range of m_h , with $am_c < am_h \lesssim 1$ on each ensemble. On sufficiently fine ensembles, m_h is near to m_b (e.g. m_b at $am_h \approx 0.65$ on a = 0.03 fm).
- Map out physical dependence on m_h , remove discretisation effects $\sim (am_h)^{2n}$ using information from several ensembles. Extrapolate results $a^2 \rightarrow 0, m_h \rightarrow m_b$.

Preliminary results

Two point functions

Consider $B_{(s)} \to K$ decays for a = 0.06 fm, $m_l/m_s = 0.1$. • Compute $H_{(s)}$ mesons at a range of am_h values:

10-3 m0.257 102 1.75 n0.286 10-10 101 1.50m0.858 10^{-17} 1.25 100 m1.144 b 10^{−24} neff 1.00-S 10⁻¹ 10-31 0.75 10-2 10-38 0.50-10-45 10-3 0.25-0.00 20 60 20 40 60 40 20 40 60 t/a t/a t/a

• Compute K mesons for a range of momenta:

Three point functions

- Generate three-point functions for scalar, vector, and tensor current insertions, $\langle K(T) J(t) H_{(s)}^{\dagger}(0) \rangle$.
- Fit simultaneously with two-point functions to extract the matrix elements of interest $\rightarrow \langle K|J|H_{(s)}\rangle$

Scalar form factor extracted directly from scalar current:

$$f_0^{(s)}(q^2) = \frac{m_b - m_{s(u)}}{M_{H_{(s)}}^2 - M_K^2} \langle K|S|H_{(s)} \rangle$$

 $B_s \to K$: $f_0(q^2)$

- a = 0.088 fm: $m_h = 1.5, 2, 2.5 m_c$
- a = 0.057 fm: $m_h = 2, 2.5, 3 m_c$
- Good precision out to p = 300

 $B \to K$: $f_0(q^2)$

• a = 0.088 fm: $m_h = 1.5, 2, 2.5 m_c$

•
$$a = 0.057$$
 fm: $m_h = 2, 2.5, 3 m_c$

• Increasing stat error at large momentum.

- Good statistical control (a = 0.042 fm stats still limited).
- Small disc. effects even for $am \gtrsim 1$.

$B \to K$ at zero-recoil

- Good statistical control (a = 0.042 fm stats still limited).
- Small disc. effects even for $am \gtrsim 1$.
- Add'l structure consists of light quark, heavy quark, and lattice spacing dependences.

- Unified treatment for range of semileptonic decays.
- HISQ action used for *all* quarks.
- Good statistical precision (percent-level or less) achieved.
- Small discretization effects.
- Will permit *interpolation* in both m_l and m_h .

- Reviewed lattice results for $B \to \pi/K$ and $B_s \to K$
- Each of these processes plays an important role in constraining the flavor sector.

• $B \to \pi$: gives precision $|V_{ub}|$

- ▶ $B_s \to K$: lattice + new LHCb result constrains $|V_{ub}|/|V_{cb}|$
- ▶ $B \rightarrow K$: FCNC process sensitive to new physics, current tensions w/ SM predictions.
- Good quality results from lattice community, with more on the way.

Thank you!