Inclusive semi-leptonic decays from lattice QCD

Shoji Hashimoto (KEK, SOKENDAI)
@ CKM 2021, WG2

Inclusive versus exclusive?

Theoretically,

- Exclusive, with lattice FF
- Inclusive, with OPE

Each has its own pros \& cons

(= better controlled systematics)
 Can't we unite them for better understanding?

Inclusive semi-leptonic B decays

Inclusive: sum over all final states,
can be computed using PT (or OPE); a number of NP MEs involved

A new method to compute the "sum" in LQCD Gambino and SH, arXiv:2005.13730
from the forward-Compton amplitude.

$$
\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t): \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle
$$

all possible states contribute

Inclusive rate

Differential decay rate:

$$
d \Gamma \sim\left|V_{c b}\right|^{2} l^{\mu \nu} W_{\mu \nu}
$$

Structure function:

$$
W_{\mu \nu}=\frac{\sum_{X}(2 \pi)^{2} \delta^{4}\left(p_{B}-q-p_{X}\right) \frac{1}{2 M_{B}}\left\langle B\left(p_{B}\right)\right| J_{\mu}^{\dagger}(0)|X\rangle\langle X| J_{\nu}(0)\left|B\left(p_{B}\right)\right\rangle}{} \quad \Longleftrightarrow\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \delta(\omega-\hat{H}) \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle
$$

"spectral function"
Decay rate:

$$
\Gamma \propto \int_{0}^{\boldsymbol{q}_{\max }^{2}} d \boldsymbol{q} \int_{\sqrt{m_{D}^{2}+\boldsymbol{q}^{2}}}^{m_{B}-\sqrt{\boldsymbol{q}^{2}}} d \omega K\left(\omega ; \boldsymbol{q}^{2}\right)\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) \delta(\omega-\hat{H}) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

Sum over states = energy integral

$$
\begin{array}{r}
\Gamma \propto \int_{0}^{\boldsymbol{q}_{\max }^{2}} d \boldsymbol{q} \int_{\sqrt{m_{D}^{2}+\boldsymbol{q}^{2}}}^{m_{B}-\sqrt{\boldsymbol{q}^{2}}} d \omega K\left(\omega ; \boldsymbol{q}^{2}\right)\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) \delta(\omega-\hat{H}) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle \\
=\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) K\left(\hat{H} ; \boldsymbol{q}^{2}\right) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle \\
\text { "smeared spectral function" }
\end{array}
$$

Lattice Compton amplitude:

$$
\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \quad \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle \longrightarrow\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) e^{-\hat{H} t} \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

"smeared" in a different way depending on t

Approximation?

$$
K(\hat{H})=k_{0}+k_{1} e^{-\hat{H}}+k_{2} e^{-2 \hat{H}}+\cdots+k_{N} e^{-k_{N} \hat{H}}
$$

Possible?

- No, if $K(\omega)=\delta(\omega-E)$. Corresponds to the full spectral function = Famous ill-posed problem.
- More chance if $K(\omega)$ is a smooth function, like

- Backus-Gilbert (and its variants) or Chebyshev approx.

Chebyshev approx:

Bailas, Ishikawa, SH, arXiv:2001.11779
(shifted) Chebyshev polynomials

$$
\begin{aligned}
& T_{0}^{*}(x)=1 \\
& T_{1}^{*}(x)=2 x-1 \\
& T_{2}^{*}(x)=8 x^{2}-8 x+1
\end{aligned} \quad \begin{array}{r}
\text { each term corresponds to the } \\
\text { correlator, because } \mathrm{x}=\mathrm{e}^{-\mathrm{H}}
\end{array}
$$

$K(\omega) \simeq \frac{c_{0}}{2}+\sum_{j=1}^{N} c_{j}^{*} T_{j}^{*}\left(e^{-\omega}\right)$

- Constraint $\left|T_{j}^{*}\left(\mathrm{e}^{-\omega}\right)\right| \leq 1$ stabilizes the expansion.
- Higher orders are suppressed when the coefficients are. It is the case for smooth function $K(\omega)$

Kernel to approximate

To implement the upper limit of integ

$$
K(\omega) \sim e^{2 \omega t_{0}}\left(m_{B}-\omega\right) \cdot \sqrt{\theta\left(m_{B}-|\mathbf{q}|-\omega\right)}
$$

kinematical factor

$$
\text { Smear by "sigmoid" with a width } \sigma
$$

Need to take a limit of $\sigma \rightarrow 0$

Compton amplitude

$\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \quad \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle$

Pilot lattice computation [JLQCD setup]

- On a lattice of $48^{3} \times 96$ at $1 / a=3.6 \mathrm{GeV}$
- Strange spectator quark
- physical charm quark mass
- (unphysically) light b quark $\sim 2.7 \mathrm{GeV}$
- 100 configs $\times 4$ src

S-wave (D and D*)

- Very well approximated by a single-exp = no sign of excited state contrib.
P-wave (D**s)
- Small : no wave function overlap of excited states when $m_{b}=m_{c}$ and zero recoil

Inclusive decay rate

- Breakdown to individual channels: VV and AA; parallel and perp with respect to the recoil momentum
- Compared to exclusive contributions estimated from $B \rightarrow D^{(*)}$ form factors (dashed line), that are separately calculated.
- $\mathrm{VV}_{\text {II }}$ dominated by $\mathrm{B} \rightarrow \mathrm{D}$
- All others by $B \rightarrow D^{*}$

Comparison with OPE

Gambino, SH, Machler, arXiv:2111.02833

OPE at $O\left(\alpha_{s}\right), O\left(1 / m_{b}{ }^{3}\right)$ with

- physical charm mass
- m_{b} to reproduce B_{s} mass
- $V V \|$
- $A A \|$
- $V V \perp$
- $A A \perp$
- MEs from fits of exp't; allowing 15% or 25% uncertainty (for those of $1 / \mathrm{mb}^{2}$ and $1 / \mathrm{mb}^{3}$)
- $\alpha_{s}=0.32(1)$

Reasonable agreement observed. Further analysis to study the consistency between OPE and lattice.

Further test with moments

Gambino, SH, Machler, arXiv:2111.02833
e.g. Lepton energy moment <E|>

Good agreement in general.

Outlook: OPE vs Lattice

- Help each other

- More cross-checks with moments; eventually determine the MEs necessary in OPE.
- Lattice limited to small q2 's. Need extrapolation.
- Also, should extend towards...
- Physical b quark mass; light quarks
- Crosscheck against exp’t with D decays
- Formulation of $b \rightarrow u$

Outlook: incl. vs excl. puzzle

$m x^{2}$

- Framework to compute inclusive decay rate on the lattice is now available. The energy integral can be reconstructed from Euclidean lattice correlators.
- Comparison with OPE will elucidate any inconsistency on the theory side. An initial result is encouraging.
- Use the phase space more widely to better control the systematic errors? Collaboration among exp, pheno, lattice would be crucial.

