Search for baryon CP violation at the LHCb

Matteo Bartolini (University of Cambridge)

On behalf of the LHCb collaboration

CKM 2021

Melbourne, 22-26 November 2021
CP violation established in K, B and D meson decays and well consistent with SM prediction

CP violation not yet observed in baryon decays

In this talk:
- Search for CP violation in $\Xi_b^- \rightarrow pK^-K^-$
- Measurement of CP asymmetry for the decay $\Lambda_b^0 \rightarrow DpK^-$
- Search for CP violation in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$
Experiment at the LHC mainly dedicated to heavy flavour physics
It ran (until 2018) at \(\mathcal{L} = 2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1} \)
Covers only 4\% of solid angle, but detects \(\approx 25\% \) of \(b\bar{b} \) pairs produced in the collisions
Very efficient at identifying \(p, K \) and \(\pi \) in the final state thanks to PID information provided by the two RICH detectors
Integrated luminosity of 5 fb$^{-1}$ collected with the LHCb detector at $\sqrt{s}= 7, 8$ and 13 TeV

First amplitude analysis of any baryon decay mode allowing for CP-violation effects

Signal purity of $(63 \pm 3)\%$ and $(70 \pm 2)\%$ for Run 1 and Run 2 in the region ± 40 MeV around the Ξ_b^- mass
Phase space asymmetries extracted using an amplitude analysis:

- Ξ^-_b baryons assumed to be produced with negligible polarization in pp collisions, as observed for the Λ^0_b baryons
- **2 kinematic variables are sufficient to characterise the phase space instead of 5**
- Use variables $m^{2}_{low}(pK^-)$ and $m^{2}_{high}(pK^-)$ to remove Bose symmetry given by the presence of two identical kaons in the final state
Decay assumed to proceed through one intermediate resonance R:

$$\Xi^{-}_b \rightarrow (R \rightarrow pK^-)K^-$$

Analysis done using the **helicity formalism**

- $\frac{d\Gamma^Q}{d\Omega}$ is written as:

$$\frac{d\Gamma^Q}{d\Omega} = \frac{1}{(8\pi m_{\Xi^-_b})^3} \sum_{M_{\Xi^-_b},\lambda_p} |A_{R,M_{\Xi^-_b},\lambda_p}^Q(\Omega)|^2$$

- $A_{R,M_{\Xi^-_b},\lambda_p}^Q(\Omega)$ is the symmetrized decay amplitude for a given intermediate state R
- Resonances are parameterized with relativistic Breit–Wigner functions
$\Xi_b^- \to pK^- K^-$ may decay through various Λ^* and Σ^* resonances:

- Only sufficiently well established resonances are considered in this study
- Baseline model obtained by adding resonances iteratively to maximise the change in $-2\ln L$

<table>
<thead>
<tr>
<th>State</th>
<th>Mass (MeV/c^2)</th>
<th>Width (MeV/c^2)</th>
<th>J^P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda(1405)$</td>
<td>1405.1 ± 1.3</td>
<td>50.5 ± 2.0</td>
<td>$\frac{1}{2}^-$</td>
</tr>
<tr>
<td>$\Lambda(1520)$</td>
<td>1518 to 1520</td>
<td>15 to 17</td>
<td>$\frac{3}{2}^-$</td>
</tr>
<tr>
<td>$\Lambda(1670)$</td>
<td>1660 to 1680</td>
<td>25 to 50</td>
<td>$\frac{1}{2}^-$</td>
</tr>
<tr>
<td>$\Sigma(1385)$</td>
<td>1383.7 ± 1</td>
<td>36 ± 5</td>
<td>$\frac{3}{2}^+$</td>
</tr>
<tr>
<td>$\Sigma(1775)$</td>
<td>1770 to 1780</td>
<td>105 to 135</td>
<td>$\frac{5}{2}^-$</td>
</tr>
<tr>
<td>$\Sigma(1915)$</td>
<td>1900 to 1935</td>
<td>80 to 160</td>
<td>$\frac{5}{2}^+$</td>
</tr>
</tbody>
</table>

- Combinatorial background modeling from 5890 MeV/$c^2 < m(pK^-K^-) < 6470$ MeV/c^2 sideband
Asymmetries extracted with an unbinned maximum-likelihood fit

- Fit performed simultaneously to the Run 1 and Run 2 data
The asymmetry for each contributing component shows no significant CP violation effect

<table>
<thead>
<tr>
<th>Component</th>
<th>$A_{CP}(10^{-2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda(1405)$</td>
<td>-27 ± 34 (stat) ± 73 (syst)</td>
</tr>
<tr>
<td>$\Lambda(1520)$</td>
<td>-1 ± 24 (stat) ± 32 (syst)</td>
</tr>
<tr>
<td>$\Lambda(1670)$</td>
<td>-5 ± 9 (stat) ± 8 (syst)</td>
</tr>
<tr>
<td>$\Sigma(1385)$</td>
<td>3 ± 14 (stat) ± 10 (syst)</td>
</tr>
<tr>
<td>$\Sigma(1775)$</td>
<td>-47 ± 26 (stat) ± 14 (syst)</td>
</tr>
<tr>
<td>$\Sigma(1915)$</td>
<td>11 ± 26 (stat) ± 22 (syst)</td>
</tr>
</tbody>
</table>

Main source of systematics:
- Ξ_b Polarization
- Production asymmetries
- Relativistic Breit-Wigner parameters
- Alternative fit model
- Efficiency
- Background shape
Two $\Lambda_b^0 \rightarrow DpK^-$ decays:

- $\Lambda_b^0 \rightarrow [K^- \pi^+]_DpK^-$ with same sign kaon is favoured
- $\Lambda_b^0 \rightarrow [K^+ \pi^-]_DpK^-$ with opposite sign kaon is suppressed

- suppressed by a factor $R \sim \left| \frac{V_{cb}V_{us}^*}{V_{ub}V_{cs}^*} \right|^2 = 7.4$
- receives contributions from $b \rightarrow c$ and $b \rightarrow u$ amplitudes
- interference between these two amplitudes depends upon the CKM angle γ

Beauty-baryon decays to final states involving a single charm meson are promising for measurements of CP violation:

$$A = \frac{\mathcal{B}(\Lambda_b^0 \rightarrow [K^+ \pi^-]_DpK^-) - \mathcal{B}(\bar{\Lambda}_b^0 \rightarrow [K^- \pi^+]_D\bar{p}K^+)}{\mathcal{B}(\Lambda_b^0 \rightarrow [K^+ \pi^-]_DpK^-) + \mathcal{B}(\bar{\Lambda}_b^0 \rightarrow [K^- \pi^+]_D\bar{p}K^+)}$$
Data sample corresponding to an integrated luminosity of 9 fb$^{-1}$ collected with the LHCb detector at $\sqrt{s} = 7$, 8, and 13 TeV

Suppressed decay $\Lambda_{b}^{0} \rightarrow [K^{+}\pi^{-}]_{D}pK^{-}$ seen for the first time

The measured yield in the full phase space is:

- 1437 ± 92 for the favoured mode
- 241 ± 22 for the suppressed mode
CP asymmetry measurement

CP asymmetry extracted after applying efficiency correction factors

- The efficiency corrections are determined as a function of the Λ^0_b phase-space variables $M^2(Dp)$ and $M^2(pK^-)$ using simulation

$$A_{CP} = \frac{\sum_i w_{SUP,\Lambda_b^0}^i / \epsilon^i - \sum_i w_{SUP,\Lambda_b^0}^i / \epsilon^i}{\sum_i w_{SUP,\Lambda_b^0}^i / \epsilon^i + \sum_i w_{SUP,\Lambda_b^0}^i / \epsilon^i}$$

CP asymmetry measured in two regions of the phase space:

- Phase space integrated asymmetry
- Asymmetry in the region involving excited Λ^* states $\Lambda^0_b \rightarrow D\Lambda^*$
Asymmetries show no significant \(CP \)-violation effect

- Phase space integrated asymmetry
 \[
 A_{CP} = 0.12 \pm 0.09(\text{stat})^{+0.02}_{-0.03}(\text{syst.})
 \]

- \(M(pK^-)^2 < 5 \text{ GeV}^2/c^4 \) region
 \[
 A_{CP} = 0.01 \pm 0.16(\text{stat})^{+0.03}_{-0.02}(\text{syst.})
 \]

- **Main source of systematics:**
 - Fit model
 - Efficiency corrections
 - Hardware trigger efficiency
 - PID efficiency
 - \(\Lambda_b^0 \) production asymmetry
 - \(p \) detection asymmetry
 - \(\pi \) detection asymmetry
Integrated luminosity of 6.6 fb^{-1} collected from 2011 to 2017 at $\sqrt{s} = 7, 8$ and 13 TeV

CP asymmetry measured using two different approaches:
- Triple product correlations
- Energy test method

$N_{\Lambda_b^0 + \bar{\Lambda}_b^0} = 27600 \pm 200$
Triple product correlations

- $\hat{T} - \text{odd}$ observables are built using the momenta \vec{p}_i of three final state particles in the mother C.M. frame: $C_\hat{T} = \vec{p}_p \cdot (\vec{p}_h \times \vec{p}_h')$, $\bar{C}_\hat{T} = \vec{p}_\bar{p} \cdot (\vec{p}_\bar{h} \times \vec{p}_\bar{h}')$:

$$A_{\hat{T}} = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)}$$

$$\bar{A}_{\hat{T}} = \frac{\bar{N}(-\bar{C}_{\hat{T}} > 0) - \bar{N}(-\bar{C}_{\hat{T}} < 0)}{\bar{N}(-\bar{C}_{\hat{T}} > 0) + \bar{N}(-\bar{C}_{\hat{T}} < 0)}$$

- True CP and P violating observables are defined as:

$$a_{\hat{T} - \text{odd}}^{\hat{T} - \text{odd}} = \frac{1}{2} (A_{\hat{T}} - \bar{A}_{\hat{T}})$$

$$a_{\hat{T} - \text{odd}}^{\hat{T} - \text{odd}} = \frac{1}{2} (A_{\hat{T}} + \bar{A}_{\hat{T}})$$

Different sensitivity to systematic effects:

$a_{\hat{T} - \text{odd}}^{\hat{T} - \text{odd}}$ marginally affected by reconstruction efficiency and b–hadron production asymmetries
Triple product correlations

Triple products are calculated in the Λ^0_b rest frame:

$C_T = \vec{p}_p \cdot (\vec{p}_{\pi^\text{fast}} \times \vec{p}_{\pi^+}) \propto \sin \Phi$

$\overline{C}_T = \vec{p}_{\bar{p}} \cdot (\vec{p}_{\pi^\text{fast}} \times \vec{p}_{\pi^-}) \propto \sin \Phi$

Asymmetries are measured both integrating over the full phase space and in bins of the phase space to enhance local sensitivity to CP violation
Search for CP asymmetries in regions of the phase space

Very rich resonant structure in the decay, dominant contributions proceed through:

- $\Lambda^0_b \to N^{*+}\pi^-, N^{*+} \to \Delta^{++}(1234)\pi^-, \Delta^{++} \to p\pi^+$
- $\Lambda^0_b \to pa_1^-(1260), a_1^-(1260) \to \rho^0(770)\pi^-, \rho^0(770) \to \pi^+\pi^-$

Phase space binning according to two schemes

- Scheme A:
 16 bins on polar and azimuthal angles of proton in the Δ^{++} frame

- Scheme B:
 10 bins on Φ angle between decay planes $\pi^+\pi^-_{\text{slow}}$ and $p\pi^-_{\text{fast}}$
Phase space integrated asymmetries

\[a_{CP}^{T-\text{odd}} = (-0.7 \pm 0.7 \pm 0.2)\% \quad \text{consistent with } CP \text{ symmetry} \]

\[a_{P}^{T-\text{odd}} = (-4.0 \pm 0.7 \pm 0.2)\% \quad \text{5.5 } \sigma \text{ deviation from } P \text{ symmetry} \]

Systematics assigned using high statistics control sample containing charm \(\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \)

Main source of systematics:
 - Reconstruction
 - Detector acceptance
Asymmetries measured in bins of the phase space

Cut on $m(p\pi^+\pi^-_{slow})$ invariant mass:

- $m > 2.8$ GeV/c^2 to enhance the $\Lambda_b^0 \rightarrow p a_1^- (\rightarrow \rho\pi^-)$ (A$_1$ and B$_1$ schemes)
- $m < 2.8$ GeV/c^2 to enhance the $\Lambda_b^0 \rightarrow N^* (\Delta^{++}\pi^-)\pi^-$ (A$_2$ and B$_2$ schemes)

CP violation hypothesis checked with a χ^2 test

No evidence for CP violation, highest significance 2.9 σ in B$_2$
Model-independent unbinned test

\[M. \text{ Williams}, \text{ Phys. Rev. D 84, 054015} \]

Method sensitive to local differences between two samples

\[\psi_{ij} = e^{-d_{ij}^2/2\delta^2} \]

\[d_{ij} \text{ Euclidean distance between two candidates in the phase space} \]

PHS: \(m^2(p\pi^+), m^2(\pi^+\pi_{\text{slow}}^-), m^2(p\pi^+\pi_{\text{slow}}^-), m^2(\pi^+\pi_{\text{slow}}^-\pi_{\text{fast}}^-), m^2(p\pi_{\text{slow}}^-) \)

\(\delta \) is the distance scale (free parameter)

\(T \) large when significant localized differences between samples exist and has an expectation of 0 when there is no difference
3 Tests:
- CP test
 - P-odd: I+IV vs II+III
 - P-even: I+II vs III+IV
- P test: I+III vs II+IV

p-values calculated for 3 different values of δ:

<table>
<thead>
<tr>
<th>Distance scale δ</th>
<th>1.6 GeV2/c4</th>
<th>2.7 GeV2/c4</th>
<th>13 GeV2/c4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value (CP conservation, P even)</td>
<td>3.1×10^{-2}</td>
<td>2.7×10^{-3}</td>
<td>1.3×10^{-2}</td>
</tr>
<tr>
<td>p-value (CP conservation, P odd)</td>
<td>1.5×10^{-1}</td>
<td>6.9×10^{-2}</td>
<td>6.5×10^{-2}</td>
</tr>
<tr>
<td>p-value (P conservation)</td>
<td>1.3×10^{-7}</td>
<td>4.0×10^{-7}</td>
<td>1.6×10^{-1}</td>
</tr>
</tbody>
</table>

- Combined significance $< 3.0 \sigma$ in CP test
- 5.3σ significance in P test
Conclusions

Summary of this talk:

- Multibody decays are interesting place to search for CP violation due to their rich phase space structure
- No evidence for CP violation in Λ_b^0 and Ξ_b^- decays for the moment
- Expected significant improvement in sensitivity in Run3:
 - Higher instantaneous luminosity
 - Channels with final state hadrons will be selected with higher efficiencies after the removal of the L0 hardware trigger