Strong Phase Measurements at BESIII

Xinyu Shan

University of Science and Technology of China (USTC)

On behalf of BESIII Collaboration

CKM2021 22nd - 26th, Nov, 2021

Outline

>CKM Angle γ/φ_3

- Measurement of γ/φ_3
- Measurement of strong phase parameters

BESIII Experiment

- BEPCII & BESIII
- Quantum correlated $D^0\overline{D}^0$ sample at BESIII

Strong Phase Measurement

- $D^0 \rightarrow K_S^0 \pi^+ \pi^-$
- $D^0 \rightarrow K^0_S K^+ K^-$
- $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^- \& K^- \pi^+ \pi^0$

➢Summary

Measurement of γ/φ_3

- > CKM Matrix
 - Only source of CPV in SM
 - γ can be determined in tree level process with small NP effects and theoretical uncertainty

$$\gamma \equiv \varphi_3 \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) = (66.2^{+3.4}_{-3.6})^{\circ}$$

- \succ Measurement of γ/φ_3
 - Measured in the tree level decay $B \rightarrow DK$
 - Inputs from $D^0 \to f$ and $\overline{D}{}^0 \to f$ decays are needed

$$\frac{A(B^- \to D^0 K^-)}{A(B^- \to D^0 K^-)} = r_B e^{i(\delta_B - \gamma)}$$
$$\frac{A(D^0 \to f)}{A(\overline{D}{}^0 \to f)} = r_D^f e^{i\delta_D^f}$$

- **Extract** γ in different D decays :
 - ADS: CF and DCS decays (eg. $K\pi, K\pi\pi^0$) $\leftarrow R_f, \delta_D^f$ [PRL 78 (1997) 3257; PRD 63 (2001) 036005]
 - GLW: (Quasi-)CP eigenstates (eg. KK, $\pi^+\pi^-\pi^0$) $\leftarrow F_+$ [PLB 265 (1991) 172; PLB 253 (1991) 483]
 - GGSZ: Multi-body Self-conjugate decay (eg. $K_S^0 \pi^+ \pi^-$) $\leftarrow c_i, s_i$ [PRD 68 (2003) 054018; PRD 67 (2003) 071301]

Measurement of Strong Phase Parameters

> Strong phase parameters of $D^0 \to f$ decay can be measured in quantum correlated $D^0 \overline{D}{}^0$ data

BEPCII & BESIII

[Nucl. Instr. Meth. A614, 345(2010)]

Quantum Correlated $D^0\overline{D}^0$ Data at BESIII

> Quantum correlated $D^0 \overline{D}^0$ produced at BESIII

 $e^+e^- \to \psi(3770) \to D^0 \overline{D}{}^0$

- $2.93 \text{fb}^{-1} @ E_{\text{cm}} = 3.773 \text{ GeV} (~3.6 \text{x CLEO's})$
- ~10.5M $D^0\overline{D}^0$ pairs produced
- > Analysis method (pair production):
 - Single Tag(ST): reconstruct one of $D\overline{D}$
 - Double Tag(DT): reconstruct both of $D\overline{D}$

> Advantages:

- Absolute branching fraction
- Quantum correlated $D^0 \overline{D}{}^0$
- Clean background
- Full kinematic constraint reconstruct missing particle (ν , K_L^0)

> Typical Tag modes:

Flavor	$K^{\pm}\pi^{\mp}$, $K^{\pm}\pi^{\mp}\pi^{0}$, $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$, $K^{\pm}e^{\mp}\nu_{e}$
CP even	K^+K^- , $\pi^+\pi^-$, $K^0_S\pi^0\pi^0$, $K^0_L\pi^0$, $\pi^+\pi^-\pi^0$
CP odd	$K_{S}^{0}\pi^{0}$, $K_{S}^{0}\eta^{(\prime)}$, $K_{S}^{0}\omega$, $K_{L}^{0}\pi^{0}\pi^{0}$
Mixed CP	$K_{S}^{0}\pi^{+}\pi^{-}$, $K_{L}^{0}\pi^{+}\pi^{-}$

$$D^0 \to K^0_S \pi^+ \pi^-$$

[PRL 124, 241802 (2020); PRD 101, 112002 (2020)]

 $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

Quantum correlated effects in Dalitz Plot (DP)

 $K_S^0 \rho(770)^0$ exist symmetrically in DP with CP-even tag mode and disappear with CP-odd tag mode

 $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

[PRL 124, 241802 (2020); PRD 101, 112002 (2020)]

- Strong phase parameters are obtained by MLH fit with expected and observed DT yields
- The strong phase parameters are limited by statistical errors
- > On average a factor of ~2.5 (2.0) more precise for $c_i(s_i)$ than CLEO-c measurements
- > The associated uncertainties on γ are expected to be 0.7°, 1.2° and 0.8° for equal $\Delta\delta$, optimal and modified optimal binning schemes.

$$D^0 \to K^0_S K^+ K^-$$

[PRD 102, 052008 (2020)]

2021/11/25

$$D^{0} \rightarrow K^{-}\pi^{+}\pi^{0} \text{ and } K^{-}\pi^{+}\pi^{+}\pi^{-}$$

$$(\text{HEP 05, 164 (2021)})$$
Measurement of γ (ADS) $\leftarrow R_{f}, \delta_{D}^{f}$ $(r_{D}^{f})^{2} = \int |\bar{A}_{f}|^{2} d\Phi / \int |A_{f}|^{2} d\Phi R_{f} e^{-i\delta_{D}^{f}} = \frac{\int A_{f}^{*} \bar{A}_{f} d\Phi}{\sqrt{\int |A_{f}|^{2} d\Phi \int |\bar{A}_{f}|^{2} d\Phi}}$
Global analysis and binned analysis for $D^{0} \rightarrow K^{-}\pi^{+}\pi^{+}\pi^{-}$

$$\overset{\text{Hinning scheme (N=4)}}{(\text{PB 802, 135188 (2020)})}$$

$$\circ \rho = \frac{DT Yield with QC}{DT Yield without QC}} (*D^{0} \cdot \bar{D}^{0} \text{ mixing is ignored for simplicity, but considered in the analysis})$$
 $\checkmark CP \text{ tag: } \rho_{CP\pm}^{f} = 1 \mp \frac{2r_{D}^{f}R_{f}}{1+(r_{D}^{f})^{2}} \cos(\delta_{D}^{f}), \ \Delta_{CP}^{f} = \pm (\rho_{CP\pm}^{f} - 1) \quad (\text{e.g. } f \text{ vs } CP + \bar{f} \text{ vs } CP)$
 $\checkmark \text{ Like-sign tag (same charge of Kaon in tag side and signal side):}$
 $\rho_{LS}^{f} = 1 - R_{f}^{2} \rho_{T,LS}^{f} = 1 - \frac{2r_{D}^{f}r_{D}^{T}}{(r_{D}^{f})^{2}(r_{D}^{f})^{2}} R_{f}R_{T} \cos(\delta_{D}^{T} - \delta_{D}^{f})$
 $(\text{e.g. } f \text{ vs } f + \bar{f} \text{ vs } \bar{f}) \quad (\text{e.g. } K^{-}\pi^{+} \text{ vs } f + K^{+}\pi^{-} \text{ vs } \bar{f})$
 $\cdot Y_{i} (DT yield for K_{S}^{0}\pi^{+}\pi^{-} \text{ tag):} \propto [K_{i} + (r_{D}^{f})^{2}K_{-i} - 2r_{D}^{f}R_{f}\sqrt{K_{i}K_{-i}}(c_{i}\cos(\delta_{D}^{f}) - s_{i}\sin(\delta_{D}^{f}))]$
Extraction of DT yields
 $\cdot \text{ Full reconstruction: Fit to } M_{bc}^{sig}$

 \succ

 \succ

 \triangleright

 \succ

 $D^0 \rightarrow K^- \pi^+ \pi^0$ and $K^- \pi^+ \pi^+ \pi^-$

> Observed values of $\rho_{CP\pm}$

Deviation from uncorrelated prediction 1 indicates that significant quantum correlated effects are observed in data

$$D^0 \rightarrow K^- \pi^+ \pi^0$$
 and $K^- \pi^+ \pi^+ \pi^-$ (Global)

 \succ Global strong phase parameters are obtained by min χ^2 fit with expected and observed $\rho \& Y_i$

> The strong phase parameters are limited by statistical errors

The results have significant improvement compared to CLEO-c results [PLB 757, 520 (2016)]
2021/11/25

$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ (Binned)

[JHEP 05, 164 (2021)]

Summary

- > BESIII provides unique quantum correlated $D^0 \overline{D}^0$ data to measure the strong-phase parameters in D decays as inputs to LHCb and Belle II for CKM angle γ measurement in the b sector
- Using 2.93 fb⁻¹ e⁺e⁻ collision data taken @ 3.773 GeV with BESIII detector, strong phase parameters of four D⁰ decays are reported
 - $K_S^0 \pi^+ \pi^-, K_S^0 K^+ K^-, K^- \pi^+ \pi^0, K^- \pi^+ \pi^+ \pi^-$

[CPC 44, 040001 (2020)]

- $\geq 20 \text{ fb}^{-1} \psi(3770)$ data will be collected in the near future @ BESIII
 - More decays (e.g. $K_S^0 \pi^+ \pi^- \pi^0$, $\pi^+ \pi^- \pi^+ \pi^-$, $K^+ K^- \pi^+ \pi^-$...)
 - Higher precision (e.g. uncertainty on $\gamma \sim 1^{\circ} \rightarrow \sim 0.4^{\circ}$ for $K_S^0 h^+ h^-$)

Thank you!

BACK-UP

Measurement of γ/φ_3

 \succ Measurement of γ/φ_3

Measurement of γ/φ_3

> Expected γ/φ_3 precision of LHCb[1] and Belle II[2] experiment

[1]. arXiv: 1808.08865

[2]. E. Kou et al. (Belle II Collaboration), PTEP 2019, 123C01 (2019)

Runs	Collected / Expected integrated luminosity	Year attained	γ/ϕ_3 sensitivity
LHCb Run-1 [7, 8 TeV]	3 fb^{-1}	2012	8°
LHCb Run-2 [13 TeV]	6 fb^{-1}	2018	4°
Belle II Run	50 ab^{-1}	2025	1.5°
LHCb upgrade I [14 TeV]	50 fb^{-1}	2030	< 1°
LHCb upgrade II [14 TeV]	300 fb^{-1}	(>)2035	$< 0.4^{\circ}$

 $\succ \gamma/\varphi_3$ uncertainty from strong phase inputs

2.93fb⁻¹@ $E_{cm} = 3.773 \text{ GeV}$ @ BESIII $D^0 \rightarrow K_S^0 \pi^+ \pi^- \sim 1^\circ$ [3]

[JHEP 02 (2021) 169]

20fb⁻¹@ $E_{cm} = 3.773 \text{ GeV}$ @ BESIII $D^0 \rightarrow K_S^0 \pi^+ \pi^- \sim 0.4^\circ$ [4]

[BESIII White Paper, Chinese Phys. C 44, 040001 (2020)]

 $D^0 \to K^0_{S/L} \pi^+ \pi^-$

[PRL 124, 241802 (2020)] [PRD 101, 112002 (2020)]

Mode	N _{ST}	$N^{\mathrm{DT}}_{K^0_S\pi^+\pi^-}$	$N^{\mathrm{DT}}_{K^0_L\pi^+\pi^-}$	3 Elayor vs. $K^0 \pi^+ \pi^-$	3 E_{trade} CP-even vs $K^0 \pi^+ \pi^-$	3 $CP_{\text{odd}} vs K^0 \pi^+ \pi^-$
Flavor tags				Thavor VS. Kyle k	Cr -even vs. R _g R R	Cr -oud vs. R _S R R
$K^+\pi^-$	549373 ± 756	4740 ± 71	9511 ± 115	() ()		
$K^+\pi^-\pi^0$	1076436 ± 1406	5695 ± 78	11906 ± 132			
$K^+\pi^-\pi^-\pi^+$	712034 ± 1705	8899 ± 95	19225 ± 176	පි	Ge	G
$K^+ e^- \bar{\nu}_e$	458989 ± 5724	4123 ± 75) L		
CP-even tags				M_{k}^{2}	M ² _k	M ² _k
K^+K^-	57050 ± 231	443 ± 22	1289 ± 41			
$\pi^+\pi^-$	20498 ± 263	184 ± 14	531 ± 28			
$K^0_S \pi^0 \pi^0$	22865 ± 438	198 ± 16	612 ± 35			
$\pi^+\pi^-\pi^0$	107293 ± 716	790 ± 31	2571 ± 74	M_{-2}^2 (GeV ² /c ⁴)	M_{-1}^2 (GeV ² /c ⁴)	M_{-9}^2 (GeV ² /c ⁴)
$K_I^0 \pi^0$	103787 ± 7337	913 ± 41		$K_{S}\pi^{+}$	$K_{S}\pi^{+}$	$K_s \pi^+$
CP-odd tags				3	3 ·	3
$K^0_{S}\pi^0$	66116 ± 324	643 ± 26	861 ± 46	Flavor vs. $K_L^* \pi^* \pi^*$	<i>CP</i> -even vs. $K_L^*\pi^+\pi^-$	CP -odd vs. $K_L^*\pi^+\pi^-$
$K_{S}^{0}\eta_{\gamma\gamma}$	9260 ± 119	89 ± 10	105 ± 15	$\widehat{}$	←	
$K_{S}^{0}\eta_{\pi^{+}\pi^{-}\pi^{0}}$	2878 ± 81	23 ± 5	40 ± 9	- 1 ⁻¹ -1 ⁻¹		
$K^0_{S}\omega$	24978 ± 448	245 ± 17	321 ± 25	e -	B 2 G	ê ²
$K_S^{0}\eta'_{\pi^+\pi^-n}$	3208 ± 88	24 ± 6	38 ± 8	$(1)^{-\mu}$		
$K^0_S \eta'_{\gamma\pi^+\pi^-}$	9301 ± 139	81 ± 10	120 ± 14			M ²
$K_{I}^{0}\pi^{0}\pi^{0}$	50531 ± 6128	620 ± 32				
Mixed CP tags						
$K_{S}^{0}\pi^{+}\pi^{-}$	188912 ± 756	899 ± 31	3438 ± 72	1 2 3	1 2 3	1 2 3
$K_{\rm S}^{0}\pi^+\pi_{\rm miss}^-$		224 ± 17		$M_{K_{\ell}^{0}\pi^{+}}^{2}$ (GeV ² / c^{4})	$M^2_{K^0_{\ell}\pi^+}$ (GeV ² / c^4)	$M_{K_0^{\prime}\pi^{+}}^2$ (GeV ² /c ⁴)
$K_{S}^{0}(\pi^{0}\pi_{\text{miss}}^{0})\pi^{+}\pi^{-}$		710 ± 34		<u>L</u>	- L ···	L

$$D^0 \to K^0_S \pi^+ \pi^-$$

 $D^0 \rightarrow K^0_{S/L} \pi^+ \pi^-$

Likelihood function in fit:

$$-2 \log \mathcal{L} = -2 \sum_{i=1}^{8} \ln P(N_i^{\text{obs}}, \langle N_i^{\text{exp}} \rangle)_{CP, K_S^0 \pi^+ \pi^-} -2 \sum_{i=1}^{8} \ln P(N_i^{\text{obs}}, \langle N_i^{\text{exp}} \rangle)_{CP, K_L^0 \pi^+ \pi^-} -2 \sum_{n=1}^{72} \ln P(N_n^{\text{obs}}, \langle N_n^{\text{exp}} \rangle)_{K_S^0 \pi^+ \pi^-, K_S^0 \pi^+ \pi^-} -2 \sum_{n=1}^{128} \ln P(N_n^{\text{obs}\prime}, \langle N_n^{\text{exp}} \rangle)_{K_L^0 \pi^+ \pi^-, K_S^0 \pi^+ \pi^-} + \chi^2$$

$$\chi^{2} = \sum_{i} \left(\frac{c_{i}' - c_{i} - \Delta c_{i}}{\delta \Delta c_{i}} \right)^{2} + \sum_{i} \left(\frac{s_{i}' - s_{i} - \Delta s_{i}}{\delta \Delta s_{i}} \right)^{2}$$

[Phys. Rev. D 81, 112002 (2010); Phys. Rev. Lett. 95, 121802 (2005)]

- $\succ c'_i$ and s'_i for $D^0 \rightarrow K^0_L \pi^+ \pi^-$
- A factor of 2.8 (2.2) more precise for c'_i and s'_i than previous measurements

Optimal

0.0

 c'_i

0.5

-0.5

1.0

0.5

-0.5

-1.0

-1.0

°.0 ¯∞

21

 $D^0 \to K^0_{S/L} \pi^+ \pi^-$

[PRL 124, 241802 (2020)] [PRD 101, 112002 (2020)]

\succ Systematic uncertainty for equal $\Delta\delta$ binning scheme

Uncertainty	c_1	c_2	<i>C</i> 3	c_4	c_5	c_6	C_7	c_8
K_i and K'_i	0.004	0.013	0.005	0.007	0.005	0.014	0.006	0.007
ST yields	0.007	0.007	0.013	0.008	0.004	0.014	0.019	0.011
MC statistics	0.001	0.003	0.003	0.003	0.001	0.004	0.004	0.003
DT peaking-background subtraction	0.002	0.003	0.002	0.007	0.005	0.007	0.003	0.002
DT yields	0.001	0.002	0.002	0.001	0.001	0.002	0.003	0.002
Momentum resolution	0.002	0.003	0.012	0.011	0.010	0.010	0.011	0.009
$D^0 ar{D}^0$ mixing	0.001	0.000	0.002	0.001	0.000	0.002	0.002	0.001
Total systematic	0.009	0.016	0.019	0.017	0.013	0.024	0.023	0.017
Statistical plus $K_L^0 \pi^+ \pi^-$ model	0.020	0.035	0.047	0.053	0.019	0.062	0.057	0.036
$K_L^0 \pi^+ \pi^-$ model alone	0.011	0.009	0.027	0.030	0.007	0.034	0.033	0.017
Total	0.022	0.039	0.051	0.055	0.023	0.066	0.061	0.039
Uncertainty	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8
K_i and K'_i	0.004	0.006	0.012	0.005	0.003	0.018	0.022	0.008
ST yields	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001
MC statistics	0.007	0.011	0.009	0.010	0.005	0.009	0.011	0.006
DT peaking-background subtraction	0.007	0.005	0.007	0.018	0.005	0.009	0.011	0.004
DT yields	0.005	0.005	0.003	0.004	0.003	0.004	0.005	0.003
Momentum resolution	0.012	0.005	0.011	0.001	0.003	0.022	0.006	0.025
$D^0 ar{D}^0$ mixing	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Total systematic	0.017	0.015	0.020	0.022	0.009	0.031	0.028	0.027
Statistical plus $K_L^0 \pi^+ \pi^-$ model	0.076	0.134	0.112	0.143	0.081	0.147	0.143	0.091
$K_L^0 \pi^+ \pi^-$ model alone	0.017	0.029	0.022	0.018	0.012	0.017	0.036	0.028
Total	0.078	0.135	0.114	0.144	0.081	0.150	0.146	0.095

 $D^0 \to K^0_{S/L} K^+ K^-$

[PRD 102, 052008 (2020)]

1.2

1

1.2 1.4 1.6 m²₊ (GeV²₂₃c⁴) 1.8

•••

1.8

1.2 1.4 1.6 m²₊ (GeV²/*c*⁴)

							CP-even vs. $K_S^0 K^+ K^-$	CP-odd vs. $K_S^0 K^+ K^-$
Mode	ST			DT				18
	$N_{ m ST}$	$\epsilon_{\rm ST}(\%)$	$N_{\rm DT}^{K_{\rm S}^0K^+K^-}$	$N_{\rm DT}^{K_{\rm L}^0K^+K^-}$	$\epsilon_{\rm DT}^{K^0_{\rm S}K^+K^-}(\%)$	$\epsilon_{\rm DT}^{K_{\rm L}^0K^+K^-}(\%)$	1.0	
Flavor-tags								
$K^{-}\pi^{+}$	524307 ± 742	63.31 ± 0.06	323	743	12.43 ± 0.07	15.85 ± 0.08		U U
$K^-\pi^+\pi^0$	995683 ± 1117	31.70 ± 0.03	596	1769	5.86 ± 0.05	7.94 ± 0.06		\rightarrow \cdot
$K^- e^+ \nu_e$	752387 ± 12795		263		3.23 ± 0.04			300 1.4
CP-even tags								
K^+K^-	53481 ± 247	61.02 ± 0.11	42	112	12.07 ± 0.07	15.52 ± 0.08		Ε
$\pi^+\pi^-$	19339 ± 163	64.52 ± 0.11	10	31	12.16 ± 0.07	15.70 ± 0.08	1.2	1.2
$K^0_{ m S}\pi^0\pi^0$	19882 ± 233	14.86 ± 0.08	7	45	2.49 ± 0.04	3.79 ± 0.04		
$\pi^+\pi^-\pi^0$	99981 ± 618	37.65 ± 0.11	51	254	6.79 ± 0.06	9.54 ± 0.07		
$K_{ m L}^0\pi^0$	209445 ± 14796		90		8.88 ± 0.06			
$K_{ m L}^{\overline{0}}\eta(\gamma\gamma)$	40009 ± 2543		19		6.60 ± 0.06		$m^2 (GeV^2/c^4)$	m_{1}^{2} (GeV ² / c^{4})
$K_{ m L}^{\overline{0}}\omega$	207376 ± 11498		44		3.42 ± 0.04			
$K_{ m L}^{\overline 0}\eta'(\pi^+\pi^-\eta)$	33683 ± 1909		7		3.23 ± 0.04		CD even $V = V^0 V^+ V^-$	CP-odd vs $K_{t}^{0}K^{+}K^{-}$
CP-odd tags							CP -even vs. $\kappa_L \kappa_L \kappa_L$	
$K^0_{ m S}\pi^0$	65072 ± 281	36.92 ± 0.11	39	89	6.75 ± 0.06	9.33 ± 0.07		
$K_{ m S}^{ m 0}\eta(\gamma\gamma)$	9524 ± 134	32.94 ± 0.11	9	10	6.05 ± 0.05	9.05 ± 0.06		
$K_{\rm S}^0\omega$	19262 ± 157	12.14 ± 0.07	16	27	2.20 ± 0.03	3.42 ± 0.04		
$K_{\rm S}^{ m 0}\eta'(\pi^+\pi^-\eta)$	3301 ± 62	12.46 ± 0.07	2	5	2.20 ± 0.03	3.46 ± 0.04		
Mixed CP tags								^۲ ⁰ · · · · · · · · · · · · · · · · · · ·
$K^0_{ m S}\pi^+\pi^-$			78	265	6.35 ± 0.05	8.32 ± 0.06	\mathbb{S}	
$K_{ m L}^{ m \widetilde{0}}\pi^+\pi^-$			282		9.56 ± 0.07			
$K_{ m S}^{ar 0}K^+K^-$	12949 ± 119	18.35 ± 0.09	4	19	2.99 ± 0.04	3.40 ± 0.04		
								· · ·]]

CKM2021

1.2

1

 $D^0 \to K^0_{S/L} K^+ K^-$

[PRD 102, 052008 (2020)]

Likelihood function in fit:

$$-2\ln\mathcal{L} = -2\sum_{i}\ln P\left(N_{i}^{\pm}, \langle N_{i}^{\pm} \rangle\right)_{K_{S}^{0}K^{+}K^{-}, CP}$$

$$-2\sum_{i}\ln P\left(N_{i}^{\prime\pm}, \langle N_{i}^{\prime\pm} \rangle\right)_{K_{L}^{0}K^{+}K^{-}, CP}$$

$$-2\sum_{i,j}\ln P\left(N_{ij}, \langle N_{ij} \rangle\right)_{K_{S}^{0}K^{+}K^{-}, K_{S}^{0}K^{+}K^{-}}$$

$$-2\sum_{i,j}\ln P\left(N_{ij}^{\prime}, \langle N_{ij}^{\prime} \rangle\right)_{K_{S}^{0}K^{+}K^{-}, K_{L}^{0}K^{+}K^{-}}$$

$$-2\sum_{i,j}\ln P\left(N_{ij}, \langle N_{ij} \rangle\right)_{K_{S}^{0}K^{+}K^{-}, K_{L}^{0}\pi^{+}\pi^{-}}$$

$$-2\sum_{i,j}\ln P\left(N_{ij}^{\prime}, \langle N_{ij}^{\prime} \rangle\right)_{K_{S}^{0}K^{+}K^{-}, K_{L}^{0}\pi^{+}\pi^{-}}$$

$$-2\sum_{i,j}\ln P\left(N_{ij}^{\prime}, \langle N_{ij}^{\prime} \rangle\right)_{K_{L}^{0}K^{+}K^{-}, K_{S}^{0}\pi^{+}\pi^{-}}$$

$$+\chi^{2}.$$
(28)

 \succ c'_i and s'_i for $D^0 \rightarrow K^0_L K^+ K^-$

 $D^0 \rightarrow K^- \pi^+ \pi^0$ and $K^- \pi^+ \pi^+ \pi^-$

2021/11/25

CKM2021

25

Bin number i

 $D^0 \rightarrow K^- \pi^+ \pi^0$ and $K^- \pi^+ \pi^+ \pi^-$

Systematics	$R_{K3\pi}$	$\delta_D^{K3\pi}$	$R_{K\pi\pi^0}$	$\delta_D^{K\pi\pi^0}$
Size of CP-tagged $D \to K^- \pi^+$ samples	0.04	7.0°	0.02	6.9°
K/π tracking and identification	0.02	3.8°	< 0.01	2.3°
π^0 reconstruction	< 0.01	$< 0.1^{\circ}$	< 0.01	$< 0.1^{\circ}$
Impact of resonance modelling on efficiency	< 0.01	2.5°	< 0.01	0.4°
Size of Monte Carlo samples	0.01	1.5°	< 0.01	1.3°
$D \to K_S^0 K^- \pi^+$ background	0.05	1.0°	0.01	4.6°
Fit method for signal yields	0.02	3.4°	< 0.01	1.1°
c_i, s_i	$^{+0.01}_{-0.00}$	3.0°	< 0.01	$\binom{+0.6}{-0.7}^{\circ}$
K_i	0.01	$\binom{+6.7}{-6.1}^{\circ}$	0.01	$(^{+3.1}_{-4.4})^{\circ}$
$\mathcal{B}(D^0 \to S)$, with $S = K^- \pi^+ \pi^+ \pi^-$ and $K^- \pi^+ \pi^0$	0.01	$\binom{+1.7}{-1.5}^{\circ}$	0.01	$\binom{+3.4}{-2.2}^{\circ}$
$\mathcal{B}(D^0 \to \bar{S})/\mathcal{B}(D^0 \to S)$	$^{+0.02}_{-0.01}$	2.7°	< 0.01	0.2°
$\mathcal{B}(D^0 \to K^- \pi)$	0.01	$\binom{+0.8}{-1.2}^{\circ}$	< 0.01	$\left(^{+0.9}_{-0.7}\right)^{\circ}$
$r_D^{K\pi}$	< 0.01	$\binom{+0.2}{-0.1}^{\circ}$	< 0.01	0.2°
$\delta_D^{K\pi}$	< 0.01	$< 0.1^{\circ}$	< 0.01	$< 0.1^{\circ}$
x,y	< 0.01	$\binom{+1.0}{-1.1}^{\circ}$	< 0.01	0.5°
$F^+_{\pi\pi\pi^0}$	< 0.01	$\begin{pmatrix} +0.3\\ -0.4 \end{pmatrix}^{\circ}$	< 0.01	0.1°
Statistical	$^{+0.08}_{-0.09}$	$\left(^{+29.3}_{-18.7}\right)^{\circ}$	0.04	$\left(^{+10.6}_{-12.6}\right)^{\circ}$

 $D^0 \rightarrow K^- \pi^+ \pi^0$ and $K^- \pi^+ \pi^+ \pi^-$

Combination of global $R \& \delta_D$ of BESIII, CLEO-c and LHCb

 $D^0 \rightarrow K^- \pi^+ \pi^0$ and $K^- \pi^+ \pi^+ \pi^-$

