

Latest Measurements of the CKM angle γ/ϕ_3 at Belle

Seema Bahinipati, IIT Bhubaneswar

On behalf of the Belle Collaboration

CKM2021 November 22-26, 2021 University of Melbourne, Australia

CKM matrix

- Cabibbo-Kobayashi-Maskawa quark mixing matrix (CKM) matrix, V_{CKM} contains coupling constants of weak interaction in the quark sector.
- CP violation (CPV) enters Standard Model as an irreducible phase in the CKM matrix.

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

 V_{CKM} unitarity leads to 6 relations that can be represented as triangles in the complex plane.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$\Rightarrow \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} + 1 + \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = 0$$

$$\phi_3/\gamma \equiv \arg(-\frac{V_{\rm ud}V_{\rm ub}^*}{V_{\rm cd}V_{\rm cb}^*})$$

HFLAV2021

Current Status

CKMFitter2019

nttps://ntiav-eos.web.cern.cn/ntiav-eos/triangle/pag2u21/index.sntml

$$\phi_1 = (22.2 \pm 0.7)^{\circ}, \phi_3 = (66.2^{+3.4}_{-3.6})^{\circ}$$

Constraints from "Tree" quantities in the (ρ -bar, η -bar) plane with only input on $|V_{ub}|$ from inclusive semileptonic B decays (only $\gamma(DK)$ is used).

Constraints from "Loop" quantities

 $\phi_3 = \left(72.1^{+5.4}_{-5.7}\right)^{\circ}$

Direct measurement

Indirect prediction

$$\phi_3 = \left(65.66^{+0.90}_{-2.65}\right)^{\circ}$$

φ₃ Measurement

- ϕ_3 is a Standard Model benchmark since it is the only CKM angle that can be accessed at tree level. Together with $|V_{ub}|$, it provides an unique testbed for new physics searches as well.
- Three methods to extract ϕ_3 using $B \to DK$ decays:
 - 1. GLW method (interference with CP eigenstates) [PLB 253, 483 (1991)] Typical final states of D₀: K^+K^- , $\pi^+\pi^-$, $K_S\pi^0$
 - 2. ADS method (interference with flavour specific states) [PRL78, 3257 (1997)] Typical final states of D⁰: CF and DCS D decays such as $K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$
 - 3. BPGGSZ method (self-conjugate of D decays using Dalitz plot) [PRD 68, 054018 (2003), PRD 70, 072003] Typical final states of D⁰: three-body D decays such as $K_S\pi^+\pi^-, K_SK^+K^-$

ADS, BPGGSZ methods need inputs from charm

Belle detector

Integrated luminosity of B factories

$> 1 \text{ ab}^{-1}$ On resonance:

Y(5S): 121 fb⁻¹ Y(4S): 711 fb⁻¹ Y(3S): 3 fb⁻¹ Y(2S): 25 fb⁻¹ Y(1S): 6 fb⁻¹ **Off reson./scan:** $\sim 100 \text{ fb}^{-1}$

$\sim 550 \text{ fb}^{-1}$ On resonance:

Y(4S): 433 fb⁻¹ Y(3S): 30 fb⁻¹ Y(2S): 14 fb⁻¹ **Off resonance**: $\sim 54 \text{ fb}^{-1}$

4S: 711 fb⁻¹ largest 5S: 121 fb⁻¹ largest 3S: 3 fb⁻¹ 2S: 25 fb⁻¹ largest 1S: 6 fb⁻¹ largest Off-resonance/scan

~100 fb⁻¹

On-resonance:

Successful data-taking for over a decade with ~600 physics publications!!

Latest Belle results

NEW

$$\bar{B^0} \to D^+ h^- (h = \pi, K)$$

$$B^{\pm} \to D^0(K_S \pi^+ \pi^-) K^{\pm}$$

$$B^- \to D(K^+\pi^-\pi^0)K^-(D=D^0/\bar{D^0})$$

$$B^0 \to D^0(K\pi)K^{*0}$$

$$B^0 \to D^0(K_S \pi^+ \pi^-) K^{*0}$$

$$B^{\pm} \to D^0(K_S \pi^+ \pi^- \pi^0) K^{\pm}$$

$$\bar{B^0} \to D^+ h^- (h = \pi, K)$$

- Improved measurements of color-favored hadronic two-body decays of B mesons will lead to a better understanding of quantum chromodynamics (QCD) effects
- The colour-allowed tree-level decays $\bar{B^0} \to D^{(*)+}h^-(h=\pi,K)$ triggered quite some interest recently since they differ significantly from the QCD factorisation expectation. [PRL102, 021801(2009), PRD 85, 032008 (2012)]
- Discrepancy has been observed between theory and data in two-body non-leptonic tree-level decays into heavy-light final states. [arXiV:1606.02888 (2016), arXiV:2007.10338 (2020)]
- Implications of New Physics in these modes will be quite interesting [PRD 102 (2020) 071701]
- These modes are high statistics control samples for hadronic B-decay measurements related to time dependent CPV and ϕ_3 measurement

$$\bar{B^0} \to D^+ h^- (h = \pi, K)$$

- Analysis using full Belle dataset of 711 fb⁻¹ [arXiV: 2111.04978 (2021)]
- Individual Branching fractions of the Cabibbo favored and the Cabibbo suppressed measured $BF(\bar{B^0} \to D^+\pi^-) = (2.48 \pm 0.01 \pm 0.09 \pm 0.04) \times 10^{-3}$ and the Cabibbo suppressed $BF(\bar{B^0} \to D^+K^-) = (2.03 \pm 0.05 \pm 0.07 \pm 0.03) \times 10^{-4}$
- Ratio of branching fractions of CS and CF is measured as $R^D = (8.19 \pm 0.20 \pm 0.23) \times 10^{-2}$
- This ratio facilitates tests of theoretical predictions, particularly those of factorization and SU(3) symmetry breaking in QCD.
- Individual branching fractions are lower than the theory predictions, however, the ratio agrees within uncertainties [arXiV:1606.02888 (2016)].

$$\bar{B^0} \to D^{*+}h^-(h = \pi, K)$$

- Large branching fraction modes high statistics sample available
- Allow for high precision tests of the theoretical framework to calculate hadronic B decays -reduction of theoretical uncertainties on CPV phases and CKM angles
- Using semi-leptonic decay rates $d\Gamma(\bar{B^0} \to D^{*+}l\bar{\nu})/dq^2$ at fixed lepton momentum transfer, $q^2=m_h^2$, prediction for a fundamental parameter of hadronic B-decays, $|a_1(q^2)|$ can be made
- QCD Factorization test (QCD factorisation prediction [arXiv:2111.04478 (2021)]) to measure this factor $|a_1(q^2)|$ and tests for SU(3) symmetry performed at Belle Results will be published soon with full Belle dataset
- Individual branching fractions and ratios of branching fraction will also be presented

$$B^{\pm} \to D^0(K_S^0 \pi^+ \pi^-) K_{\text{GGSZ}}^{\pm}$$

- First measurement of ϕ_3 using a model-independent Dalitz plot analysis of $B \to D(K_S^0 \pi^+ \pi^-) K$ [PRD85, 112014 (2012)]. Combined Belle and Belle II analysis result will be presented by Niharika (next talk)!!
- Uses measurements of the strong phase of the amplitude from the CLEO

Collaboration as input

Full Belle dataset of 711 fb⁻¹

• $\phi_3 = (77.3^{+15.1}_{-14.9}) \pm 4.1 \pm 4.3)^\circ$

• $r_B = 0.145 \pm 0.030 \pm 0.010 \pm 0.011$

• Latest Belle result using D*K (605 fb⁻¹ data): $\phi_3 = (78.4^{+10.8}_{-11.6}) \pm 3.6 \pm 8.9$ [PRD81, 112002 (2010)]

$$B^- \to D(K^+\pi^-\pi^0)K^-_{\scriptscriptstyle ADS}$$

- $B^- \to D(K^+\pi^-\pi^0)K^-$ analysis using full Belle dataset of 711 fb⁻¹ [PRD88, 091104 (R) (2013)]
- First evidence of the signal for this suppressed decay with a significance of 3.2 σ
- Direct CP asymmetry between the suppressed B- and B+ decays: $A_{DK} = (0.41 \pm 0.30 \pm 0.05)$
- $R_{DK} = (1.98 \pm 0.62 \pm 0.24) \times 10^{-2}$
- These results can be used to constrain ϕ_3 using the ADS method

$B^0 \to D^0(K\pi)K^{*0}(K\pi)_{ADS}$

- Usually ϕ_3 measurement has been advanced mainly by exploiting charged B meson decays into $D^{(*)}K^\pm$, this analysis exploits neutral B meson decays
- $B^0 \rightarrow D(K^-\pi^+)K^{*0}(K^+\pi^-)$ analysis done using full Belle dataset of 711 fb⁻¹ [PRD 86, 011101(R) (2012)]
- $R_{DK^{*0}} = \Gamma(B^0 \to [K^-\pi^+]_D K^+\pi^-)/\Gamma(B^0 \to [K^+\pi^-]_D K^+\pi^-) = (4.5^{+5.6+2.8}_{-5.0-1.8}) \times 10^{-2}$
- Since the value is not significant, credible upper limit set: $R_{DK^{*0}} < 0.16(95 \% CL)$
- $R_{DK^{*0}}$ can be used to extract ϕ_3 by combining with other observables related to the same dynamical parameters r_s, δ_s, k .

$$B^0 \to D(K_S^0 \pi^+ \pi^-) K_{\text{GGSZ}}^{*0}$$

First model-independent Dalitz analysis of $B^0 o D(K_{\mathfrak{c}}^0\pi^+\pi^-)K^{*0}$ using full Belle dataset of 711 fb⁻¹ [PTEP 043C01 (2016)]

$$x_{\pm} = r_s \cos(\delta_s \pm \phi_3)$$
$$y_{\pm} = r_s \sin(\delta_s \pm \phi_3)$$

$$x_{\pm} = r_s \cos(\delta_s \pm \phi_3)$$

$$y_{\pm} = r_s \sin(\delta_s \pm \phi_3)$$

$$r_S^2 \equiv \frac{\Gamma(B^0 \to D^0 K^+ \pi^-)}{\Gamma(B^0 \to \bar{D}^0 K^+ \pi^-)}$$
1.5

$$x_{-} = +0.4^{+1.0}_{-0.6} {}^{+0.0}_{-0.1} \pm 0.0$$

$$y_{-} = -0.6^{+0.8}_{-1.0} {}^{+0.1}_{-0.0} \pm 0.1$$

$$x_{+} = +0.1^{+0.7}_{-0.4} {}^{+0.0}_{-0.1} \pm 0.1$$

$$y_{+} = +0.3^{+0.5}_{-0.8} {}^{+0.0}_{-0.1} \pm 0.1$$

$$r_s < 0.87(68 \% CL)$$

$$B^{\pm} \to D(K_S^0 \pi^+ \pi^- \pi^0) K_{\text{ggsz}}^{\pm}$$

- First measurement of ϕ_3 using full Belle dataset using $B^\pm \to D(K_S^0\pi^+\pi^-\pi^0)K^\pm$ [JHEP10(2019)178]
- Measurements of the strong-phase difference of the of $D \to K_S^0 \pi^+ \pi^- \pi^0$ decays using 0.82 fb⁻¹ data collected at the $\psi(3770)$ resonance by the CLEO-c [JHEP01, 82 (2018)] used as input.
- $\cos{(c_i)}$ and $\sin{(s_i)}$ of the strong phase difference between D^0 and D^0 averaged over the region of phase space, obtained using CLEO data used as input in the Belle analysis
- Several resonance substructures seen
- Binning the phase space around these resonances in the absence of an amplitude model done

Bin	Resonance
1	ω
2	$K^{*-} ho^+$
3	$K^{*+} ho^-$
4	K*-
5	K*+
6	K*0
7	$ ho^+$
8	$ ho^-$
9	remainder

$B^{\pm} \to D(K_S^0 \pi^+ \pi^- \pi^0) K_{GGSZ}^{\pm}$

			1, 02 (2010)]	
Bin	Resonance	Bin	c_i	s_i
1	ω	1	$-1.11 \pm 0.09^{+0.02}_{-0.01}$	0.00
2	$K^{*-}\rho^{+}$	2	$-0.30 \pm 0.05 \pm 0.01$	$-0.03 \pm 0.09^{+0.01}_{-0.02}$
3	$K^{*+}\rho^{-}$	3	$-0.41 \pm 0.07^{+0.02}_{-0.01}$	$0.04 \pm 0.12^{+0.01}_{-0.02}$ *
4	K*-	4	$-0.79 \pm 0.09 \pm 0.05$	$-0.44 \pm 0.18 \pm 0.06$
5	K*+	5	$-0.62 \pm 0.12^{+0.03}_{-0.02}$	$0.42 \pm 0.20 \pm 0.06$ *
6	K*0	6	$-0.19 \pm 0.11 \pm 0.02$	0.00
7	$ ho^+$	7	$-0.82 \pm 0.11 \pm 0.03$	$-0.11 \pm 0.19^{+0.04}_{-0.03}$
8	ρ^-	8	$-0.63 \pm 0.18 \pm 0.03$	$0.23 \pm 0.41^{+0.04}_{-0.03}$ *
9	remainder	9	$-0.69 \pm 0.15^{+0.15}_{-0.12}$	0.00

Signal-enhanced fit projections [JHEP10(2019)178]

$$B^{\pm} \to D(K_S^0 \pi^+ \pi^- \pi^0) K^{\pm}$$

[JHEP10(2019)178]

•
$$\phi_3 = (5.7^{+10.2}_{-8.8}) \pm 3.5 \pm 5.7^{\circ}$$

• 95% CL interval on ϕ_3 $(-29.7,109.5)^\circ$ consistent with the current world average

	$B^{\pm} \to D\pi^{\pm}$	$B^{\pm} \to DK^{\pm}$
x_{+}	$0.039 \pm 0.024 ^{~+0.018}_{~-0.013} ^{~+0.014}_{~-0.012}$	$-0.030 \pm 0.121 {}^{+0.017}_{-0.018} {}^{+0.019}_{-0.018}$
y_+	$-0.196 {}^{+0.080}_{-0.059} {}^{+0.038}_{-0.034} {}^{+0.032}_{-0.030}$	$0.220 {}^{+0.182}_{-0.541} \pm 0.032 {}^{+0.072}_{-0.071}$
x_{-}	$-0.014\ \pm0.021\ ^{+0.018}_{-0.010}\ ^{+0.019}_{-0.010}$	$0.095 \pm 0.121 {}^{+0.017}_{-0.016} {}^{+0.023}_{-0.025}$
y_{-}	$-0.033 \pm 0.059^{+0.018}_{-0.019}~^{+0.019}_{-0.010}$	$0.354 {}^{+0.144}_{-0.197} {}^{+0.015}_{-0.021} {}^{+0.032}_{-0.049}$

- $r_B = 0.323 \pm 0.147 \pm 0.023 \pm 0.051$
- $\delta_B = (83.4^{+18.3}_{-16.6}) \pm 3.1 \pm 4.0^{\circ}$

$$B^{\pm} \to D(K_S^0 \pi^+ \pi^- \pi^0) K^{\pm}$$

- This measurement can be improved upon once a suitable amplitude model for is available to provide guidance in choosing a more sensitive binning.
- Precise inputs for c_i, s_i from BESIII will help reduce the systematic uncertainty.
- Single-mode uncertainty on ϕ_3 of 4.4° is achievable with a 50 ab⁻¹ sample of data at Belle II experiment.

Summary

- Precision measurement of ϕ_3 is important to establish CPV in Standard model.
- Latest measurements by Belle have strong impact in improving ϕ_3 precision. Several results are already available with full Belle dataset.
- Belle II and LHCb will be major players for further improving ϕ_3 precision in future.

 ϕ_3 measurement precision will improve the precision to about $1-2^\circ$ with

50 ab⁻¹ to be collected at Belle II.

Figure: Future (50 ab $^{-1}$ Belle II data)

BACK-UP

arXiV:2007.10338 (2020)

measurement	value	source
$\mathcal{B}(B_s^0 \to D_s^- \pi^+)$	$(3.6 \pm 0.5 \pm 0.5) \ 10^{-3}$	Belle
$\frac{f_{s}}{f_{d}} \frac{\mathcal{B}(B_{s}^{0} \to D_{s}^{-}(\to \phi(\to K^{+}K^{-})\pi^{-})\pi^{+})}{\mathcal{B}(B^{0} \to D^{-}(\to K^{+}\pi^{-}\pi^{-})\pi^{+})}$ $\frac{f_{s}}{f_{d}} \frac{\mathcal{B}(B_{s}^{0} \to D_{s}^{-}(\to K^{+}K^{-}\pi^{-})\pi^{+})}{\mathcal{B}(B^{0} \to D^{-}(\to K^{+}\pi^{-}\pi^{-})\pi^{+})}$	$(6.7\pm0.5)\%$	CDF
$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to D_s^- (\to K^+ K^- \pi^-) \pi^+)}{\mathcal{B}(B^0 \to D^- (\to K^+ \pi^- \pi^-) \pi^+)}$	0.174 ± 0.007	LHCb
$rac{f_s}{f_d}rac{\mathcal{B}(B_s^0 o D_s^-(o K^+K^-\pi^-)\pi^+)}{\mathcal{B}(B^0 o D^-(o K^+\pi^-\pi^-)K^+)}$	2.08 ± 0.08	LHCb
$\left(\frac{\mathcal{B}(B^0 \to D^- K^+)}{\mathcal{B}(B^0 \to D^- \pi^+)}\right)$	$(8.22 \pm 0.28)\%$	LHCb
$\frac{\mathcal{B}(B^0 \to D^- K^+)}{\mathcal{B}(B^0 \to D^- \pi^+)}$	$(6.8 \pm 1.7)\%$	Belle
$f_{00}\mathcal{B}(B^0 \to D^-(\to K^+\pi^-\pi^-)\pi^+)$	$(1.21\pm0.05)10^{-4}$	BaBar/CLEO
$\mathcal{B}(B^0 \to D^-(\to K^+\pi^-\pi^-)\pi^+)$	$(2.88 \pm 0.29) 10^{-4}$	BaBar
$\frac{\mathcal{B}(B_s^0 \to D_s^{*-}\pi^+)}{\mathcal{B}(B_s^0 \to D_s^-\pi^+)}$	0.66 ± 0.16	Belle
$rac{\mathcal{B}(B_s^0 o D_s^-\pi^+)}{\mathcal{B}(B^0 o D^{*-}K^+)} \ rac{\mathcal{B}(B^0 o D^{*-}\pi^+)}{\mathcal{B}(B^0 o D^{*-}\pi^+)}$	$(7.75 \pm 0.30)\%$	LHCb/BaBar/Belle
$f_{00}\mathcal{B}(B^0 o D^{*-}\pi^+)$	$(2.72 \pm 0.14) 10^{-3}$ BaBar/CL	
$\frac{\mathcal{B}(B^0 \to D^{*-}\pi^+)}{\mathcal{B}(B^0 \to D^-\pi^+)}$	0.99 ± 0.14	BaBar

$$\bar{B^0} \to D^{(*)+}h^-(h=\pi,K)$$

Theory predictions

Table 2: CP-averaged branching ratios (in units of 10^{-3} for $b \to c\bar{u}d$ and 10^{-4} for $b \to c\bar{u}s$ transitions) of $\bar{B}_{(s)} \to D_{(s)}^{(*)+}L^-$ decays. The vector- and axial-vector final states refer to the longitudinal polarization amplitudes only. The theoretical errors shown correspond to the uncertainties due to renormalization scales μ and μ_0 , the CKM as well as the hadronic parameters, added in quadrature. The experimental data is taken from refs. [62,66,81,82].

Decay mode	LO	NLO	NNLO	Exp.
$\bar{B}_d \to D^+ \pi^-$	3.58	$3.79^{+0.44}_{-0.42}$	$3.93^{+0.43}_{-0.42}$	2.68 ± 0.13
$\bar{B}_d o D^{*+} \pi^-$	3.15	$3.32^{+0.52}_{-0.49}$	$3.45^{+0.53}_{-0.50}$	2.76 ± 0.13
$\bar{B}_d \to D^+ K^-$	2.74	$2.90^{+0.33}_{-0.31}$	$3.01^{+0.32}_{-0.31}$	1.97 ± 0.21
$\bar{B}_d \to D^{*+} K^-$	2.37	$2.50{}^{+0.39}_{-0.36}$	$2.59{}^{+0.39}_{-0.37}$	2.14 ± 0.16
$\frac{\operatorname{Br}(\bar{B}_d \to D^+ K^-)}{\operatorname{Br}(\bar{B}_d \to D^+ \pi^-)}$	0.077	$0.077^{+0.002}_{-0.002}$	$0.077^{+0.002}_{-0.002}$	0.074 ± 0.009
$\frac{\operatorname{Br}(\bar{B}_d \to D^{*+} K^-)}{\operatorname{Br}(\bar{B}_d \to D^{*+} \pi^-)}$	0.075	$0.075{}^{+0.002}_{-0.002}$	$0.075^{+0.002}_{-0.002}$	0.078 ± 0.007

[arXiV:1606.02888]

$\bar{B^0} \to D^{(*)+}h^-(h=\pi,K)$ Theory predictions

[arXiV:1606.02888]

$ a_1(D^{(*)+}L^-) $	LO	NLO	NNLO	Exp.
$ a_1(D^+\pi^-) $	1.025	$1.054^{+0.022}_{-0.020}$	$1.073^{+0.012}_{-0.014}$	0.89 ± 0.05
$ a_1(D^{*+}\pi^-) $	1.025	$1.052^{+0.020}_{-0.018}$	$1.071^{+0.013}_{-0.014}$	0.96 ± 0.03
$ a_1(D^+ ho^-) $	1.025	$1.054^{+0.022}_{-0.019}$	$1.072^{+0.012}_{-0.014}$	0.91 ± 0.08
$ a_1(D^{*+}\rho^-) $	1.025	$1.052^{+0.020}_{-0.018}$	$1.071^{+0.013}_{-0.014}$	0.86 ± 0.06
$ a_1(D^+K^-) $	1.025	$1.054^{+0.022}_{-0.019}$	$1.070^{+0.010}_{-0.013}$	0.87 ± 0.06
$ a_1(D^{*+}K^-) $	1.025	$1.052^{+0.020}_{-0.018}$	$1.069^{+0.010}_{-0.013}$	0.97 ± 0.04
$ a_1(D^+K^{*-}) $	1.025	$1.054^{+0.022}_{-0.019}$	$1.070^{+0.010}_{-0.013}$	0.99 ± 0.09
$ a_1(D^+a_1^-) $	1.025	$1.054^{+0.022}_{-0.019}$	$1.072^{+0.012}_{-0.014}$	0.76 ± 0.19

$$\bar{B^0} \to D^{(*)+}h^-(h=\pi,K)$$

Theory predictions

arXiV:2007.10338

BFs in units of 10⁻³

source	PDG	our fits (w	v/o QCDF)	our fit (w/ Q0	$\overline{\mathrm{CDF, no}\ f_s/f_d)}$	QCDF prediction
scenario		no f_s/f_d	$(f_s/f_d)_{ m LHCb,sl}^{7~{ m TeV}}$	ratios only	SU(3)	_
χ^2/dof		2.5/4	3.1/5	4.6/6	3.7/4	_
$\mathcal{B}(\bar{B}^0_s \to D_s^+\pi^-)$	3.00 ± 0.23	3.6 ± 0.7	3.11 ± 0.25	$3.11^{+0.21}_{-0.19}$	$3.20^{+0.20}_{-0.26}$ *	4.42 ± 0.21
$\mathcal{B}(\bar{B}^0 o D^+ K^-)$	0.186 ± 0.020	0.222 ± 0.012	0.224 ± 0.012	0.227 ± 0.012	0.226 ± 0.012	0.326 ± 0.015
$\mathcal{B}(\bar{B}^0 o D^+\pi^-)$	2.52 ± 0.13	2.71 ± 0.12	2.73 ± 0.12	2.74 ± 0.12	$2.73_{-0.11}^{+0.12}$	_
$\mathcal{B}(\bar{B}^0_s o D_s^{*+}\pi^-)$	2.0 ± 0.5	2.4 ± 0.7	2.1 ± 0.5	$2.46^{+0.37}_{-0.32}$	$2.43^{+0.39}_{-0.32}$	$4.3^{+0.9}_{-0.8}$
$\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$	0.212 ± 0.015	0.216 ± 0.014	0.216 ± 0.014	$0.213^{+0.014}_{-0.013}$	$0.213^{+0.014}_{-0.013}$	$0.327^{+0.039}_{-0.034}$
$\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)$	2.74 ± 0.13	2.78 ± 0.15	2.79 ± 0.15	$2.76^{+0.15}_{-0.14}$	$2.76^{+0.15}_{-0.14}$	_

[arXiV:2111.04978 (2021)]

TABLE II. Systematic uncertainties in the measured R^D value and branching fractions for $\overline B{}^0 \to D^+\pi^-$ and $\overline B{}^0 \to D^+K^-$. The total systematic uncertainty is the quadratic sum of the uncorrelated uncertainties.

Source	R^D	$\mathcal{B}(\overline{B}{}^0 \to D^+\pi^-)$	$\mathcal{B}(\overline{B}{}^0 \to D^+ K^-)$
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$	_	1.71%	1.71%
Tracking	-	1.40%	1.40%
$N_{B\overline{B}}$	_	1.37%	1.37%
f^{00}/f^{+-}	_	1.92%	1.92%
$D^+ \to K^- \pi^+ \pi^+$ model	_	0.69%	0.69%
PDF parameterization	2.71%	1.63%	1.79%
PID efficiency of K/π	0.88%	0.68%	0.73%
D^+ mass selection window	0.05%	0.56%	0.64%
J/ψ veto selection	0.12%	0.004%	0.15%
Peaking background yield	0.07%	0.04%	0.00%
MC statistics	< 0.01	0.04%	0.04%
Fit bias	_	0.58%	0.61%
Total	2.85%	3.43%	3.54%

[JHEP10(2019)178]

Source		$B^{\pm} \rightarrow$	$D\pi^{\pm}$			$B^{\pm} \rightarrow$	DK^{\pm}	
	x_{+}	y_{+}	x_{-}	y_{-}	x_{+}	y_{+}	x_{-}	y_{-}
Efficiency	+0.013	+0.030	+0.012	+0.012	+0.012	+0.022	+0.012	+0.013
uncertainty	-0.009	-0.027	-0.008	-0.013	-0.013	-0.023	-0.012	-0.016
Migration matrix	+0.011	+0.021	+0.011	+0.013	+0.007	+0.015	+0.007	+0.006
uncertainty	-0.004	-0.019	-0.003	-0.014	-0.008	-0.016	-0.007	-0.012
$m_{\pi\pi\pi^0}$ resolution	0.003	0.001	0.004	0.001	0.001	0.001	0.001	0.003
K_i, \overline{K}_i	+0.004	+0.007	+0.004	+0.002	+0.001	+0.001	+0.002	+0.001
uncertainty	-0.001	-0.006	-0.001	-0.002	-0.002	-0.001	-0.002	-0.001
PDF shape	+0.004	+0.004	+0.004	+0.001	+0.009	+0.017	+0.009	+0.001
	-0.008	-0.003	-0.004	-0.001	-0.008	-0.016	-0.007	-0.005
Fit bias	0.000	0.001	0.000	0.000	0.001	0.001	0.001	0.003
PID	0.001	0.001	0.001	0.000	0.002	0.001	0.002	0.001
Total systematic	+0.018	+0.038	+0.018	+0.018	+0.017	+0.032	+0.017	+0.015
uncertainty	-0.013	-0.034	-0.010	-0.019	-0.018	-0.032	-0.016	-0.021
c_i, s_i	+0.014	+0.032	+0.010	+0.019	+0.019	+0.072	+0.023	+0.032
uncertainty	-0.012	-0.030	-0.006	-0.010	-0.018	-0.071	-0.025	-0.049
Total statistical	+0.024	+0.080	+0.021	+0.059	+0.121	+0.182	+0.121	+0.144
uncertainty	-0.024	-0.059	-0.021	-0.059	-0.121	-0.541	-0.121	-0.197

Table 9. Systematic uncertainties from various sources in $B^{\pm} \to D\pi^{\pm}$ and $B^{\pm} \to DK^{\pm}$ data samples.

[PRD88, 091104 (R) (2013)]

TABLE II. Summary of the systematic uncertainties for R_{Dh} and A_{Dh} . Negligible contributions are denoted by "····"

Source	R_{DK} (%)	$R_{D\pi}$ (%)	A_{DK}	$A_{D\pi}$
ΔE and C'_{NR} PDFs	+6.5 -7.1	+8.3 -10.3	$^{+0.03}_{-0.02}$	$+0.02 \\ -0.03$
Fit bias	+0.1	+0.4	• • •	• • •
Due to $B\bar{B}$ and $q\bar{q}$ bias	± 3.0			
Peaking background	± 9.5	± 8.2	± 0.04	± 0.01
Efficiency	± 0.1	± 0.1		
Detector asymmetry			± 0.02	± 0.02
Total	+11.9 -12.2	+11.7 -13.2	± 0.05	$+0.03 \\ -0.04$

[PRD 86, 011101(R) (2012)]

TABLE II. Summary of the systematic uncertainties for $\mathcal{R}_{DK^{*0}}$.

Source	Uncertainty $[10^{-2}]$
Signal PDFs	+0.1-0.2
$\bar{D}^0 \rho^0$ PDFs	+0.0 – 0.1
Combinatorial BB PDFs	+1.8-1.2
Peaking background PDFs	+0.1-0.1
$qar{q}$ PDFs	+2.2-1.4
$ar{D}^0 K^+$ and $ar{D}^0 \pi^+$ PDFs	+0.0-0.1
Fit bias	+0.1-0.1
Efficiency	+0.1-0.1
Charmless decay	+0.0-0.3
Total	+2.8-1.8