Charmless B decay measurements at Belle

Yun-Tsung Lai (Univ. of Tokyo, Kavli IPMU) on behalf of the Belle collaboration

CKM 2021 WG5

24th, Nov., 2021

- Charmless B decays:
 - Suppressed in Standard Model with small BF (usually < 10⁻⁵).
 - Sensitive to non-SM physics within the penguin loop in many decays.
 - Some SM sensitivity tests with precision measurement in the flavor sector.
 - Discrepency in measurement: indicate non-SM physics.
- Main challenge in experimental measurement: Small BF and large $ee \rightarrow q\overline{q}$ (q=u,d,s,c) background.
 - Combinatorial background in reconstruction with the same final state.
 - PID & comnitnuum suppression.

Results of these six decay modes will be reported.

- $B \rightarrow p \overline{p} \pi \pi$ PRD 101, 052012 (2020)
- $\bullet \quad B^+ \to K^+ K^- \pi^+$
- $B^+ \rightarrow \pi^+ \pi^0 \pi^0$
- $B_s^0 \to \eta' X_{ss}^-$ prd 104, 012007 (2021)
- $B^0_s \rightarrow \eta' \eta$ prd 104, L031101 (2021)
- $B_{s}^{0} \rightarrow \eta' K_{s}^{0}$

KEKB collider

- An asymmetric energy e⁺e⁻ collider at KEK.
 - LER(e+) 3.5 GeV.
 - HER(e⁻) 8 GeV.
 - Crossing angle: ±11 mrad.
- Target:
 - e^+e^- → Y(4S) → $B\overline{B}$ for B decay: 711 fb⁻¹.
 - $e^+e^- \rightarrow Y(5S) \rightarrow B^{(*)0}_s \overline{B}^{(*)0}_s$ for B^0_s decay: 121 fb⁻¹.
- Main background: $e^+e^- \rightarrow q\overline{q}$ (q=u,d,s,c) with 3 times larger cross section.

BELLE

加速空洞

陽電子源

Analysis overview

- Blind analysis:
 - Use Monte Carlo (MC) samples for signal and backgrounds study.
 - Signal is scaled with an assumed BF.
- Backgrounds:
 - Continuum e+e- → qq (q=u,d,s,c): Based on the decay shape difference, use multivariate tools (Fisher, Neuro-Network) with various event topology variables.

Ann. Human Genet. 7, 179 (1936) PRL 41, 1581 (1978) PRL 91, 261801 (2003) Nucl. Instrum. Methods Phys. Res., Sect. A 559, 190 (2006)

 BB background: Looking for peaking background (usually from charmed) and apply proper veto on invariant mass.
 "Generic" B background: b → c.
 "Rare" B background: b → u,d,s.

Analysis overview (cont'd)

- Major variables for signal B identification:
 - Energy difference: $\Delta E \equiv E_B E_{
 m beam}$ in C.M. frame
 - Beam-energy constrained mass: $M_{
 m bc}\equiv \sqrt{E_{
 m beam}^2/c^4-|ec{p_B}/c|^2}$
 - Discriminant for continuum suppression.
- Signal extraction: Extended unbinned maximun likelihood fit on data with above variables.
- Branching fraction determination:
 - $N_{BB} = 772M$ for Y(4S) data of 771 fb⁻¹.
 - Y(5S): 121 fb⁻¹ with 3 branches: $B_{0_s}B_{0_s}B_{0_s}^{*0} 87.0\%, B_{0_s}B_{0_s}^{*0} 7.3\%, B_{0_s}B_{0_s}^{*0} 5.7\%.$
 - Fraction containing B_s^0 : $f_s = 0.201 \pm 0.031$ (world average)
 - ► $N_{B0s} = (16.60 \pm 2.68) \times 10^{6}$

in C.M. frame

- Charmless B decays: good field to search for CP violation due to inteference between $b \rightarrow s$ penguin and $b \rightarrow u$ tree.
 - Evidence of direct CP violation in $B^+ \rightarrow p\overline{p}K^+$ by LHCb. PRL 113, 141801 (2014)
 - M_{pp} peaks near threshold. PRL 88, 181803 (2002)
 - In $p\overline{p}$ reset frame, K is produced preferably in the \overline{p} direction. Opposite to that of B⁺ \rightarrow $p\overline{p}\pi^+$, in which b \rightarrow u dominates. PLB 659, 80 (2008)

PRD 75, 094013 (2007)

- Most of baryonic B decays presumably proceed predominantly via $b \rightarrow s$.
 - Measurement of b → u modes is important for theoretical investigation based on a generalized factorization approach.
 PRD 96, 051103 (2017)
- $B_0 \rightarrow p\overline{p}\pi^+\pi^-$: Measured by LHCb.
- $B^+ \rightarrow p \overline{p} \pi^+ \pi^0$: First measurement by this study.

$B \rightarrow p\overline{p}\pi\pi$: Data result

1st uncertainty: stat. 2nd uncertainty: syst.

2021/11/24

Yun-Tsung Lai (Kavli IPMU) @ CKM 2021

$B \rightarrow p\overline{p}\pi\pi$: $M_{\pi\pi}$ distribution

- Measure the signal yields in different bins with the same 2D fit method.
- B⁺ mode: a χ^2 fit to separate B⁺ \rightarrow ppp⁺ and nonresonant.
 - B⁺ → ppp⁺: Breit-Widner convolved with a Gaussian resolution function. Signal yield = 86 ± 41. Measured B(B⁺ → ppπ⁺π⁰): ~10X smaller than predicted B(B⁺ → ppp⁺). PRD 75, 094013 (2007)

$B \rightarrow p\overline{p}\pi\pi$: $M_{p\overline{p}}$ distribution

- Measure the signal yields in different bins with the same 2D fit method.
- Dibaryon mass system tends to peak near the low mass threshold.
- 2.85 3.128 GeV/c²: charmonium-enhanced region. e.g. J/ψ.

Equally distributed	$M_{p\bar{p}}$ of B ^o mode					
below and above the charmonium-enhanced region	$M_{p\bar{p}} \; ({\rm GeV}/c^2)$	N_s	σ	$\varepsilon_{\mathrm{eff}}$ (%)		
_	$M_{p\bar{p}} < 2.85$	$26.1^{+10.0}_{-9.1}$	4.0	9.8		
BF in threshold enhancement	$2.85 < M_{p\bar{p}} < 3.128$	$19.6^{+10.2}_{-9.3}$	2.9	9.9		
region is consistent with	$3.128 < M_{p\bar{p}}$	$29.1_{-13.1}^{+16.2}$	3.5	9.4		
LHCb result.						
	N	\mathbf{I}_{pp} of B ⁺ mode				
	$\overline{M_{p\bar{p}}} (\text{GeV}/c^2)$	N_s	σ	$\varepsilon_{\mathrm{eff}}$ (%)		
The lowest bin dominates.	$M_{p\bar{p}} < 2.85$	$133.5^{+26.6}_{-25.2}$	5.1	4.8		
	$2.85 < M_{p\bar{p}} < 3.128$	$12.3^{+10.3}_{-9.7}$	1.4	4.0		
	$3.128 < M_{p\bar{p}}$	$-3.8^{+15.1}_{-13.8}$	•••	3.4		

$B^+ \rightarrow K^+ K^- \pi^+$: Introduction

- Possible contributions in SM: •
 - Tree, W-exchange (KK*), strong penguin, electroweak penguin ($\phi\pi$), where experimental limit of B(B⁺ $\rightarrow \phi \pi^+$): 1.5x10⁻⁷ PLB 728, 85 (2014)
- An unidentified structure observed Babar and LHCb. PRD 90, 112004 (2014) • PRL 99, 221801 (2007)

PRL 112, 011801 (2014) PRL 123, 231802 (2019)

- LHCb reported large CP asymmetry in low M_{KK} as well.
- PLB 726, 337 (2013) Theoretical explanation: • PRD 89, 094013 (2014)
 - Final-state state interactions may enhance CP violation.
 - LHCb also suggests the large CP asymmtry in low M_{KK} originates from $\pi\pi \leftrightarrow KK$ rescattering.
- Previous report by full Belle data: Inclusive BF and A_{CP}. **PRD 96, 031101(R) (2017)** •
- This study will update the following with a re-optimized binning: •
 - Angular distribution of KK at low mass.
 - dBF along $M_{\kappa\pi}$.

$B^+ \rightarrow K^+ K^- \pi^+$: $M_{\kappa\kappa}$ distribution & $\cos\theta_{hel}$

$B^+ \rightarrow K^+ K^- \pi^+$: $M_{\kappa \pi}$ distribution

- 2D fit with ΔE , M_{bc} within each bin.
- LHCb model: from PRL 123, 231802 (2019)
 - Consistent with our data.
- Model 1: 10% of $X_{KK}\pi$ with spin-0.
- Model 2: Expected resonances K^{*0}K⁺ and K^{*0}₀K⁺.

Preliminary

$B^+ \to \pi^+ \pi^0 \pi^0$: Introduction

- Charmless three-body B decays are useful to study the properties of the weak interaction in the quark sector.
- Dalitz plot analysis: search for intermediate resonances and localized A_{CP} . Also to constrain magnitudes and phases of the CKM matrix elements. For instance, $B \rightarrow \rho \pi$ for ϕ_2 (α) and also $B^+ \rightarrow \chi_{c0} \pi^+$ for ϕ_3 (γ).
- PRD 79, 072006 (2009)PRD 101, 012006 (2020)• Similar measurement on B⁺ → π⁺π⁻π⁺ by Babar and LHCb.
 - BF = $(15.2 \pm 0.6 \pm 1.2 \pm 0.4) \times 10^{-6}$
 - Full amplitude analysis.
- Upper limit of $B^+ \rightarrow \pi^+\pi^0\pi^0$ was reported: 8.9x10⁻⁴ at 90 C.L. by CLEO.

PLB 241 278-282 (1990)

• $B^+ \rightarrow \rho(770)^+ \pi_0$: (10.9 ± 1.4)x10⁻⁶, by Belle and Babar.

PRL 94 031801 (2005) PRD 75 091103 (2007)

- Majority of the $B^+ \rightarrow \pi^+\pi^0\pi^0$ decays.

$B^+ \rightarrow \pi^+ \pi^0 \pi^0$: Data result

- Major challenge: Shower leakage due to 2 π^0 and correlation Preliminary between energy and other variables
 - A π^{0} momentum threshold 0.5 GeV/c is adopted.
- 3D fit with ΔE , M_{bc} , C'_{NN} (Continuum suppression with Neuro-Network). •
- Signal yield = $1062.8_{-85.4}^{+86.8}$
 - Inclusive BF = $(19.0 \pm 1.5 \pm 1.4) \times 10^{-6}$
- $A_{CP} = (9.2 \pm 6.8)\%$

Signal-enhanced projection plot of data fit result

$B^+ \rightarrow \pi^+ \pi^0 \pi^0$: Structure in Dalitz plot

- Signal isolation on Dalitz plot ($M_{\pi\pi}$): sPlot technique.
 - 2D binned fit on sWeights $M_{\pi\pi}$ histogram: Incoherent sum of PDFs.
- Small contribution from non-resonant: < 6x10⁻⁷ @ 90% C.L.
- $B(B^+ \rightarrow \rho(770)^+\pi^-) = (11.2 \pm 1.1 \pm 0.9 \pm 1.4) \times 10^{-6}$

- 1st uncertainty: stat. 2nd uncertainty: syst. 3rd uncertainty (if any): interference effect.
- New structure at low $M_{\pi 0\pi 0}$ region from multiple resonances with a significance of 9.2 σ .
 - Combined BF = $(6.4 \pm 0.9 \pm 0.6) \times 10^{-6}$

2D fit result

$B^+ \rightarrow \pi^+ \pi^0 \pi^0$: Localized A_{CPI}

- 2D fit on the charge-separated sWeights $M_{\pi\pi}$ histograms.
- An asymmetry is found at $M_{\pi 0\pi 0} \sim 1.4 \text{ GeV/c}^2$.
 - Corresponding to $f_2(1270)^{\circ}\pi^+$.

 $A_{CP} = (92 \pm 28)\%$ 3.2 σ confirmed by 3D fit within selected region.

Preliminary

- η ': anomalous production in B decays.
 - First observed at CLEO. PRL 81, 1786-1790 (1998) PRD 68, 011101 (2003)
 - η' mass is higher than is expected from symmetry considerations.
 PRD 97, 054508 (2018)
 - Unexpected BF enhancement seen in some inclusive measurements e.g. $B \rightarrow \eta' X_s$.
 - Large rate of exclusive modes (e.g. B⁺→η'K⁺) could be accounted for SM factorization. hep-ph/9707354
 - New observation on decay with η' could provide information for better understanding on it.

$B^0_{s} \rightarrow \eta' X_{s\bar{s}}$: Data result

- First measurement based on semi-inclusive method.
 - To have better understanding on η' mass and BF issues by models such as glueball coupling. PRD 97, 054508 (2018)
- 1D fit with M_{bc} in bins of $M(X_{s\bar{s}})$: with -0.12 < ΔE < 0.05 GeV.
 - $\label{eq:phi} \begin{tabular}{ccc} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
 - $X_{s\bar{s}}$: Use PYTHIA6 for MC. Reconstruct K+K- + n π and K+K₀ + n π : sum-of-exclusive

Sum of fits to all $M(X_{s\bar{s}})$ bins

- uncertainty: 1st: stat. 2nd: syst. 3rd: X_{ss} fragmentation in PYTHIA6 4th: N(B^{(*)0}, B^{(*)0},)
- $B(B_{s}^{0} \rightarrow \eta' X_{s\bar{s}}) = (-0.7 \pm 8.1 \pm 0.7 + 3.0 \pm 0.1) \times 10^{-4}$
 - UL: 1.4x10⁻³ @ 90 C.L.
- $R(\eta') = B(B_{s}^{0} \rightarrow \eta' X_{s\bar{s}})/B(B \rightarrow \eta' X_{s}) = -0.2 \pm 2.1 \pm 0.2^{+0.8}_{-1.5} \pm 0.03$
 - UL: 3.5 @ 90% C.L.
 - ~1 assuming naive SU(3) symmetry.

$\overline{M(X_{s\bar{s}})}$	$\epsilon'~(\%)$	$N_{ m sig}$	$\mathcal{B}(B^0_s \to \eta' X_{s\bar{s}}) \ (10^{-4})$	$M(X_{s\bar{s}})$	$\epsilon'~(\%)$	$N_{ m sig}$	$\mathcal{B}(B^0_s \to \eta' X_{s\bar{s}}) \ (10^{-4})$
1.0–1.2	3.60 ± 0.08	$0.4^{+2.6}_{-1.9}$	$0.05^{+0.30}_{-0.02}$ (stat) $^{+0.004}_{-0.005}$ (syst)	1.0–1.2	0.016 ± 0.006	0.0	
1.2–1.4	2.82 ± 0.08	$0.08^{+2.4}_{-1.7}$	$0.01^{+0.36}_{-0.28}$ (stat) $^{+0.001}_{-0.001}$ (syst)	1.2 - 1.4	0.24 ± 0.02	$0.3^{+1.4}_{-0.8}$	$0.5^{+2.5}_{-1.5}$ (stat) $^{+0.1}_{-0.04}$ (syst)
1.4–1.6	0.90 ± 0.04	$0.7^{+2.5}_{-1.8}$	$0.3^{+1.1}_{-0.8}$ (stat) $^{+0.04}_{-0.05}$ (syst)	1.4–1.6	0.86 ± 0.04	$2.0^{+3.0}_{-2.2}$	$1.0^{+1.4}_{-1.1}$ (stat) $^{+0.1}_{-0.07}$ (syst)
1.6-1.8	0.54 ± 0.03	$0.4^{+2.1}_{-1.4}$	$0.3^{+1.6}_{-1.1}$ (stat) $^{+0.05}_{-0.1}$ (syst)	1.6–1.8	0.65 ± 0.04	$1.2^{+3.3}_{-2.6}$	$0.8^{+2.1}_{-1.6}$ (stat) $^{+0.1}_{-0.1}$ (syst)
1.8-2.0	0.34 ± 0.03	$1.4^{+2.6}_{-2.0}$	$1.7^{+3.3}_{-2.5}$ (stat) $^{+0.4}_{-0.6}$ (syst)	1.8 - 2.0	0.45 ± 0.03	$4.8_{-3.4}^{+4.2}$	$4.4^{+3.9}_{-3.1}$ (stat) $^{+0.9}_{-0.7}$ (syst)
2.0-2.2	0.22 ± 0.02	$0.3^{+3.7}_{-3.4}$	$0.6^{+7.1}_{-6.4}$ (stat) $^{+0.2}_{-0.2}$ (syst)	2.0 - 2.2	0.36 ± 0.03	$-2.4^{+3.9}_{-3.2}$	$-2.8^{+4.6}_{-3.8}$ (stat) $^{+0.9}_{-0.7}$ (syst)
2.2–2.4	0.14 ± 0.02	$-2.3^{+3.8}_{-3.4}$	$-7.0^{+11.6}_{-10.4}$ (stat) $^{+1.7}_{-4.1}$ (syst)	2.2–2.4	0.16 ± 0.02	$-1.1^{+3.6}_{-2.9}$	$-2.6^{+8.9}_{-7.1}$ (stat) $^{+0.2}_{-1.9}$ (syst)

$$X_{s\bar{s}}$$
: K⁺K⁻ + n π

 $X_{s\bar{s}}$: K⁺K⁰_S + n π

$B_{s}^{0} \rightarrow \eta' \eta$: Data result

- Only through transitions sensitive to BSM physics. Eur. Phys. J. C 74, 3026 (2014)
 - SM prediction: (2 4)x10⁻⁵.
 - − BF of $B_{d,s}^{\circ} \rightarrow \eta(')\eta(')$: extract CPV parameters from SU(3)/U(3) symmetry.
- 3D fit with ΔE , M_{bc} , $M_{\eta'}$. - $\eta' \rightarrow \pi^+ \pi^- \eta$, $\eta \rightarrow \gamma \gamma$. $f_s \times \mathcal{B}(B_s^0 \rightarrow \eta' \eta) \quad \begin{array}{c} (0.51 \pm 0.44 \pm 0.09) \times 10^{-5} \\ < 1.3 \times 10^{-5} @ 90\% \text{ CL} \end{array}$
- Signal yield = 2.7 ± 2.5 .

$$\mathcal{B}(B^0_s \to \eta' \eta) \quad \begin{array}{c} (2) \\ <0 \end{array}$$

$$(2.5 \pm 2.2 \pm 0.6) \times 10^{-5}$$

< 6.5×10^{-5} @ 90% CL

Prog. Theor. Exp. Phys. 2019, 123C01 (2019)

Yun-Tsung Lai (Kavli IPMU) @ CKM 2021

$B_{s}^{0} \rightarrow \eta' K_{s}^{c}$: Data result

- Preliminary Contributions from gluonic and electroweak penguin amplitudes.
 - Sensitive to BSM physics which could affect decay rates and CPV.
 - SM prediction: (0.72 4.5)x10-6 Prog. Theor. Exp. Phys. 2019, 123C01 (2019)
- 3D fit with ΔE , M_{bc} , $M_{n'}$.
 - $\eta' \rightarrow \pi^+\pi^-\eta, \ \eta \rightarrow \gamma\gamma.$
- Signal yield = -3.21 ± 1.85 .

- UL @ 90% C.L.:
$$f_s \times \mathcal{B}(B^0_s \to \eta' K^0_S) < 1.64 \times 10^{-6}$$

 $\mathcal{B}(B^0_s \to \eta' K^0_S) < 8.16 \times 10^{-6}$

Signal-enhanced projection plot of data fit result

- $B \rightarrow p \overline{p} \pi \pi$:
 - First measurement for $B^+ \rightarrow p \overline{p} \pi^+ \pi^0$. Search for ρ modes.
- $B^+ \rightarrow K^+ K^- \pi^+$:
 - Angular study on KK system at low mass with large A_{CP} .
- $B^+ \rightarrow \pi^+ \pi^0 \pi^0$:
 - New $\pi^0\pi^0$ structure with multiple resonances, and large A_{CP} at $M_{\pi^0\pi^0} \sim 1.4$ GeV/c².
- $\bullet \quad B^{\scriptscriptstyle 0}{}_s \rightarrow \ \eta' X_{s\bar{s}}, \ B^{\scriptscriptstyle 0}{}_s \rightarrow \ \eta' \eta, \ B^{\scriptscriptstyle 0}{}_s \rightarrow \ \eta' K^{\scriptscriptstyle 0}{}_S:$
 - UL on BF is set.
- Looking forward to larger data from Belle II to improve these studies and to have more new resutls.

Backup

2021/11/24

Yun-Tsung Lai (Kavli IPMU) @ CKM 2021

$B^+ \rightarrow \pi^+ \pi^0 \pi^0$: Summary of results

- Inclusive BF: Efficiency is determined by the signal model from 2D fit.
- $BF(B^+ \rightarrow \rho(770)^+\pi^0)$: We consider the interference effect with $B^+ \rightarrow \rho(1450)^+\pi^0$.
- BF of the $\pi^{0}\pi^{0}$ structure can't be reported separated due to lack of information: highly overlapping PDFs, large variations of masses and widths, interference.

Decay mode	Mass	Width	ϵ (%)	Fitted yield	$\mathcal{B}~(10^{-6})$	$\mathcal{A}_{CP}~(\%)$
$\pi^+ \pi^0 \pi^0$ (inclusive)			8.1	1063 ± 86	$19.0 \pm 1.5 \pm 1.4$	$9.2\pm6.8\pm0.5$
Non-resonant			12.5	3 ± 14	$0.03 \pm 0.16^{+0.12}_{-0.15} \ (< 0.6)$	—
$ \rho(770)^+ \pi^0, \ \rho(770)^+ \to \pi^+ \pi^0 $	775.5	150.3	8.5	637 ± 65	$11.2 \pm 1.1 \pm 0.9 \pm 1.4$	$8.0 \pm 15.0^{+2.2}_{-7.5}$
$\rho(1450)^+\pi^0, \ \rho(1450)^+ \to \pi^+\pi^0$	1465	400	9.9	80 ± 51	$1.2 \pm 0.6 \pm 0.2 \ (< 2.5)$	—
$f_0(980)\pi^+, f_0(980)^0 \to \pi^0\pi^0$	980	50	10.2	102 ± 30	—	$-27.0 \pm 30.0^{+44.8}_{-56.3}$
$f_2(1270)\pi^+, f_2(1270)^0 \to \pi^0\pi^0$	1275.4	185.1	6.6	119 ± 32	—	$57.0 \pm 23.0^{+11.4}_{-25.9}$
$f_0(600)\pi^+, f_0(600)^0 \to \pi^0\pi^0$	600	400	8.3	123 ± 37	—	$10 \pm 34^{+12.9}_{-22.6}$
$X\pi^+, X \to \pi^0\pi^0$	—	—	8.0	345 ± 48	$6.4\pm0.9\pm0.6$	—
$f_0(1370)\pi^+, f_0(1370)^0 \to \pi^0\pi^0$	1400	300	10.4	< 75	< 1.1	—
$\chi_{c0}\pi^+,\chi_{c0}\to\pi^0\pi^0$	3415.2	10.2	13.3	< 39	< 0.5	—
$\chi_{c2}\pi^+,\chi_{c2}\to\pi^0\pi^0$	3556.3	2.0	13.6	< 63	< 0.7	_

1st uncertainty: stat.

2nd uncertainty: syst.

3rd uncertainty (if any): interference effect.

Yun-Tsung Lai (Kavli IPMU) @ CKM 2021

Preliminary