Charm lifetimes and mixing

Maria Laura Piscopo

CPPS, Theoretische Physik 1, Universität Siegen

CKM 2021

 $24 \ {\rm November} \ 2021$

The theoretical framework

The total decay width of a heavy hadron

 $\circ \Gamma(H_Q)$ can be computed as [Shifman, Voloshin '85], see also review [Lenz '14]

$$\Gamma(H_Q) = \frac{1}{2m_{H_Q}} \operatorname{Im} \langle H_Q | i \int d^4 x \, \mathrm{T} \Big\{ \mathcal{H}_{eff}(x) \,, \mathcal{H}_{eff}(0) \Big\} | H_Q \rangle$$

 $\diamond \mathcal{H}_{eff}$ weak effective Hamiltonian describing Q decays

[Buchalla, Buras, Lautenbacher '96]

◊ Use optical theorem

to relate Γ with imaginary part of forward scattering amplitude

Maria Laura Piscopo (Siegen U.)

$The \ HQE$

- $\diamond \text{ Exploit } m_Q \gg \Lambda_{QCD} \text{ and use } p_Q^\mu = m_Q v^\mu + k^\mu \text{ with } k \sim \Lambda_{QCD}$
- ♦ Systematic expansion

$$\Gamma(H_Q) = \underbrace{\Gamma_3}_{\Gamma(Q)} + \underbrace{\Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_Q^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_Q^3} + \dots + 16\pi^2 \left[\widetilde{\Gamma}_6 \frac{\langle \widetilde{\mathcal{O}}_6 \rangle}{m_Q^3} + \widetilde{\Gamma}_7 \frac{\langle \widetilde{\mathcal{O}}_7 \rangle}{m_Q^4} + \dots \right]}_{\delta \Gamma(H_Q)}$$

- * $\Gamma_d, \tilde{\Gamma}_d$ short distance coefficients
- * $\mathcal{O}_d, \tilde{\mathcal{O}}_d$ local operators bilinear in the heavy quark field
- * $\Gamma(Q)$ total decay width of free quark Q
- * $\delta\Gamma(H_Q)$ effects due to interaction with soft gluons and quarks

Maria Laura Piscopo (Siegen U.)

The HQE

$$\Gamma(H_Q) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_Q^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_Q^3} + \ldots + 16\pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_Q^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_Q^4} + \ldots \right]$$

Very advanced framework thanks to huge effort of big community

Maria Laura Piscopo (Siegen U.)

Status of HQE: perturbative side

$$\Gamma_d = \Gamma_d^{(0)} + \left(\frac{\alpha_s(m_Q)}{4\pi}\right)\Gamma_d^{(1)} + \left(\frac{\alpha_s(m_Q)}{4\pi}\right)^2\Gamma_d^{(2)} + \dots$$

Semileptonic (SL) modes		Non-leptonic (NL) modes		
$\Gamma^{(3)}$	Fael, Schönwald, Steinhauser '20 * ;	$\Gamma_3^{(2)}$	Czarnecki, Slusarcyk, Tkachov '05 **	
13	¹ 3 Czakon, Czarnecki, Dowling '21		Ho-Kim, Pham, Altarelli, Petrarca,	
$\Gamma_{3}^{(2)}$	Czarnecki, Melnikov, v. Ritbergen, Pak, Dowling, Bonciani, Ferroglia, Biswas, Brucherseifer, Caola '97-'13	$\Gamma_3^{(1)}$	Voloshin, Bagan, Ball, Braun, Gosdzinsky, Fiol, Lenz, Nierste, Ostermaier, Krinner, Rauh '84-'13	
$\Gamma_5^{(1)}$	Alberti, Gambino, Nandi, Mannel, Pivovarov, Rosenthal '13-'15	$\Gamma_5^{(0)}$	Bigi, Uraltsev, Vainshtein, Blok, Shifman '92	
$\Gamma_6^{(1)}$	Mannel, Pivovarov '19	$\Gamma^{(0)}$	Lenz, MLP, Rusov, Mannel,	
$\Gamma_7^{(0)}$	Dassinger, Mannel, Turczyk '06	¹ 6	Moreno, Pivovarov '20-'21	
$\Gamma_8^{(0)}$	Mannel, Turczyk, Uraltsev '10	$\tilde{\Gamma}_{\epsilon}^{(1)}$	Beneke, Buchalla, Greub, Lenz, Nierste, Franco, Lubicz, Mescia,	

* see also talks by K. Schönwald and M. Fael
** Partial result

Maria Laura Piscopo (Siegen U.)

 $\Gamma_7^{(0)}$ Gabbian CKM 2021, 24 November 2021

Tarantino, Rauh '02-'13

Gabbiani, Onishchenko, Petrov '03-'04

Status of HQE: non-perturbative side

 \star Fit to experimental data on semileptonic *B* decays (see also talks by P. Gambino and K. Vos) ★ HQET sum rules

 \star Lattice QCD

	B_d,B^+	B_s
$\langle \mathcal{O}_5 angle$	Gambino, Schwanda, Alberti Healey, Nandi '13-'14 ★ Ball, Braun, Neubert '93-'95 ★ Kronfeld, Simone, Gambino, Melis, Simula '00-'17 ★	Spectroscopy relations for μ_G^2
$\langle \mathcal{O}_6 angle$	Gambino, Schwanda, Alberti Healey, Nandi '13-'14 \star EOM relation to $\langle \tilde{\mathcal{O}}_6 \rangle$	EOM relation to $\langle \tilde{\mathcal{O}}_6 \rangle$
$\langle ilde{\mathcal{O}}_6 angle$	Kirk, Lenz, Rauh '17 ★	King, Lenz, Rauh (to appear) \star
$\langle \tilde{\mathcal{O}}_7 \rangle$	VIA	VIA

 $\diamond~$ No independent computation for D: rely only heavy-quark symmetry

leads to large uncertainties

 $\diamond~$ For baryons: even less results available

Maria Laura Piscopo (Siegen U.)

Study of lifetimes of charmed mesons

Based on arXiv:2109.13219

In collaboration with A. Lenz, A. Rusov, Th. Rauh, D. King, Ch. Vlahos

HQE: bottom vs. charm

- \diamond Two expansion parameters: $\alpha_s(m_Q)$ and $\frac{\Lambda_{QCD}}{m_Q}$
- ♦ If $m_Q \gg \Lambda_{QCD}$, HQE well defined series

* Expect $\Gamma(H_Q) = \Gamma(Q) + \delta \Gamma(H_Q)$ with $\delta \Gamma(H_Q) \ll \Gamma(Q)$

$$\diamond \text{ For } Q = b: \quad \alpha_s \sim 0.22 \quad \text{and} \quad \frac{\Lambda_{QCD}}{m_b} \sim 0.10$$

* Lifetime ratios of bottom mesons differ from 1 up to 10 percent

[Kirk, Lenz, Rauh '17]

* Good agreement with experimental data

$$\diamond \text{ For } Q = c: \quad \alpha_s \sim 0.33 \text{ and } \frac{\Lambda_{QCD}}{m_c} \sim 0.30$$

* Is charm heavy enough to apply HQE?

Charmed mesons - Experimental status

◊ Charmed meson lifetimes are measured precisely

	D^0	D^+	D_s^+	
$\tau [\mathrm{ps}]$	0.4101(15)	1.040(7)	0.504(4)	
$\Gamma [ps^{-1}]$	2.44(1)	0.96(1)	1.98(2)	
$ au(D_X)/ au(D^0)$	1	2.54(2)	1.20(1)	

[PDG 2021] *

◊ Spectator quark effects must give large contribution

$$\Gamma(D) = \Gamma(c) + \delta \Gamma(D)$$
 with $\delta \Gamma(D) \sim \Gamma(c)$

◊ Can HQE explain this pattern?

* New measurement of $\tau(D^{0,+})$ by Belle II arXiv:2108.03216 not included

(see talks by T. Humair and S. Prell)

Spectator quark effects

- ◊ Very different size of four-quark operator diagrams
 - * Dominant contribution of Pauli interference to D^+ [Guberina et al. '79]]
 - * Small contribution due to helicity suppression for D^0 and D_s^+
- $\diamond\,$ Large NLO-QCD corrections for D^+ at dimension-six
- ◊ Dimension-seven contributions important

$Our \; set{-}up$

♦ Most up to date analysis

$$\Gamma(D) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_c^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_c^3} + \dots + 16\pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_c^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_c^4} + \dots \right]$$
$$\tau(D_{(s)}^+) / \tau(D^0) = 1 + \left[\Gamma(D^0)^{\text{HQE}} - \Gamma(D_{(s)}^+)^{\text{HQE}} \right] \tau(D_{(s)}^+)^{\text{exp}}$$

 \diamond What we have included

	SL	NL		Source
Γ_3	NLO	NLO	$\langle \mathcal{O}_5 \rangle$	Heavy quark symmetry;
Γ_5	LO	LO		Spectroscopy relations
Γ_6	LO	LO New [*]	$\langle \mathcal{O}_6 \rangle$	EOM relation to $\langle \tilde{\mathcal{O}}_6 \rangle$ New
$\tilde{\Gamma}_6$	NLO	NLO	$\langle \tilde{\mathcal{O}}_6 \rangle$	HQET sum rules New ^{**}
$\tilde{\Gamma}_7$	LO	LO	$\langle \tilde{\mathcal{O}}_7 \rangle$	VIA

* Based on [Lenz, MLP, Rusov '20] ** [King, Lenz, Rauh (to appear)]

Maria Laura Piscopo (Siegen U.)

Result

 * Obtained using charm quark mass in kinetic scheme with cutoff of μ = 0.5 GeV

Maria Laura Piscopo (Siegen U.)

Conclusion and outlook for charm lifetimes

- $\diamond~$ HQE consistent with experimental data albeit huge uncertainties
- $\diamond~$ Large room for theoretical improvement
 - * For $\langle \mathcal{O}_5 \rangle$, $\langle \mathcal{O}_6 \rangle$ exp. data highly desirable \rightarrow control of $SU(3)_F$

BESIII, Belle II, super tau charm factory?

- * Lattice determination for $\langle \tilde{\mathcal{O}}_6 \rangle$ Planned by M. Black, O. Witzel (RBC-UKQCD, Siegen)
- * Complete dimension-seven contribution at LO-QCD: $\Gamma_{7,\rm NL}^{(0)}$
- * Higher order QCD corrections, particularly $\Gamma_{3,NL}^{(2)}$, $\tilde{\Gamma}_{6}^{(2)}$, and $\tilde{\Gamma}_{7}^{(1)}$ Planned by U. Nierste, M. Steinhauser (Karlsruhe)
- * Study dependence of charm quark mass definition

Maria Laura Piscopo (Siegen U.)

Analysis

of GIM cancellations for D-mixing

Based on arXiv:2007.03022

In collaboration with A. Lenz, Ch. Vlahos

Charm mixing

 $\diamond~$ Neutral mesons mix with their antiparticles via box diagrams

 $\diamond\,$ Evolution described by 2×2 Hamiltonian matrix $\hat{\mathcal{H}}$

$$i\frac{d}{dt}\begin{pmatrix}D(t)\\\overline{D}(t)\end{pmatrix} = \left(\hat{M} - i\frac{\hat{\Gamma}}{2}\right)\begin{pmatrix}D(t)\\\overline{D}(t)\end{pmatrix}$$

- $\diamond\,$ Flavour eigenstates $D,\,\overline{D}$ have same mass and decay width
- ♦ Find $\hat{\mathcal{H}}$ eigenstates D_H , D_L with proper mass and decay width

$$\Delta M_D = M_H - M_L \qquad \Delta \Gamma_D = \Gamma_L - \Gamma_H$$

Maria Laura Piscopo (Siegen U.)

Charm mixing

♦ Determine mixing observables as see e.g. review [Lenz, Wilkinson '20]

$$\Delta M_D = 2|M_{12}| + \mathcal{O}(\phi_{12}^2) \qquad \Delta \Gamma_D = 2|\Gamma_{12}| + \mathcal{O}(\phi_{12}^2) \qquad \phi_{12} = \arg\left(\frac{M_{12}}{\Gamma_{12}}\right)$$

$$\diamond \text{ Exp. : } x = \frac{\Delta M_D}{\Gamma_D} = (0.409^{+0.048}_{-0.049})\% \quad y = \frac{\Delta \Gamma_D}{2\Gamma_D} = (0.615^{+0.056}_{-0.055})\%$$

HFLAV 2021, LHCb arXiv:2106.03744 see also talks by L. Dong, J. Libby and D. Cervenkov see talk of A. Schwartz

♦ M_{12} , Γ_{12} : dispersive and absorptive part of $D^0 \to \overline{D}^0$ amplitude

$$\Gamma_{12} = \frac{1}{2m_D} \operatorname{Im} \langle \overline{D^0} | i \int d^4 x \, \mathrm{T} \Big\{ \mathcal{H}_{eff}(x) \,, \mathcal{H}_{eff}(0) \Big\} | D^0 \rangle$$

♦ Compute Γ_{12} within the HQE

The HQE for mixing

$$\Gamma_{12} = 16\pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{Q}_6 \rangle}{m_Q^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{Q}_7 \rangle}{m_Q^4} + \dots \right]$$

$\tilde{\Gamma}_6^{(1)}$	Beneke, Buchalla, Greub, Lenz, Nierste '98 Beneke, Buchalla, Lenz, Nierste '03 Ciuchini, Franco, Lubicz, Mescia, Tarantino '03 Lenz, Nierste '06	$\langle \tilde{Q} \rangle$ $\langle \tilde{Q} \rangle$	$\langle \tilde{Q}_6 \rangle$ arXiv:1706.04622 \bigstar Kirk, Lenz, Rauh '17 \bigstar $\langle \tilde{Q}_7 \rangle$ VIA, see also arXiv:1910.00970 \checkmark	
$\tilde{\Gamma}_{7}^{(0)}$	Beneke, Buchalla, Dunietz '96 Dighe, Hürth, Kim, Yoshikawa '01	★ HQET sum rules 🔺 Lattice QCD		

- $\diamond~$ Theoretical prediction four orders of magnitude smaller than data
- $\diamond~$ Complete failure of the HQE for charm mixing? $_{\rm see\ talk\ by\ H.\ Umeeda}$
 - * HQE successfully predicts bottom mixing and lifetime ratios
 - * No signal of breakdown of HQE for charm lifetimes

Maria Laura Piscopo (Siegen U.)

Peculiarities of charm mixing

- ♦ Three contributions to Γ_{12} with internal dd, ss, sd quark pairs
- ♦ Apply HQE and use $\lambda_d + \lambda_s + \lambda_b = 0$ with $\lambda_q = V_{cq} V_{uq}^*$

$$\Gamma_{12} = -\lambda_s^2 \left(\Gamma_{12}^{ss} - 2\Gamma_{12}^{sd} + \Gamma_{12}^{dd} \right) + 2 \lambda_s \lambda_b \left(\Gamma_{12}^{sd} - \Gamma_{12}^{dd} \right) - \lambda_b^2 \Gamma_{12}^{dd}$$

♦ Interplay of CKM and GIM suppression [Glashow, Iliopoulos, Maiani '70]

$$\lambda_b^2 = -1.560 \times 10^{-8} + 1.757 \times 10^{-8}i \qquad \left(\Gamma_{12}^{ss} - 2\Gamma_{12}^{sd} + \Gamma_{12}^{dd}\right) = 0.07z^2$$

 $z = m_s^2/m_c^2 \approx 0.006$

Maria Laura Piscopo (Siegen U.)

Alternative scale setting

♦ Consider the dependence of Γ_{12} on renormalisation scale $\mu_1^{q_1q_2}$

$$\Gamma_{12} = \sum_{q_1q_2 = ss, sd, dd} \tilde{\Gamma}_6^{q_1q_2}(\mu_1^{q_1q_2}, \mu_2^{q_1q_2}) \langle \tilde{Q}_6 \rangle (\mu_2^{q_1q_2}) \frac{1}{m_c^3} + \dots$$

 $\diamond \ \Gamma_{12}^{ss,dd,sd}$ contribute to different decay channels

- * Reduction of dependence on $\mu_1^{q_1q_2}$ within $\Gamma_{12}^{q_1q_2}$ for each q_1q_2 pair
- * Rescattering effects can only relate Γ_{12}^{dd} and Γ_{12}^{ss}
- ♦ Treat dependence on $\mu_1^{q_1q_2}$ separately
 - * Compute Γ_{12} varying $\mu_1^{ss}, \mu_1^{sd}, \mu_1^{dd}$ independently

$$\Omega \in [4.6 \times 10^{-5}, 1.3]$$

 $\Omega=2|\Gamma_{12}|^{\rm SM}/\Delta\Gamma_D^{\rm Exp}$

Maria Laura Piscopo (Siegen U.)

Conclusion and outlook for charm mixing

- ◊ Alternative scale setting
 - * Uncertainty of HQE prediction enhanced, also exp. data covered
 - * No sizeable effect for observables with no GIM cancellations
 - * Bottom and charm lifetimes, $\Delta\Gamma_{(s)}$ and $\Delta M_{(s)}$, not affected
 - * Can affect semileptonic CP asymmetries in $B_{(s)}$ -mixing

Governed by weakly GIM suppressed contributions

- ◊ Future improvements
 - $\ast\,$ Include NNLO-QCD corrections at dimension-six when completed

[Gerlach et al. '21; Asatrian et al. '20; Asatrian et al. '17]

See talk by V. Shtabovenko

* Include higher power corrections [Bobrowski, Lenz, Rauh '12 (partial dim. 9)]

Maria Laura Piscopo (Siegen U.)

Thanks for the attention