QCD corrections to $\Delta \Gamma_s$

Vladyslav Shtabovenko
Karlsruhe Institute of Technology
Institute for Theoretical Particle Physics
based on 2106.05979, 22XX.XXXXX
in collaboration with M. Gerlach, U. Nierste and M. Steinhauser

11th International Workshop on the CKM Unitarity Triangle
24th of November 2021
1 Motivation

2 B-meson mixing
 - Theory
 - Calculation
 - Phenomenology

3 Summary and Outlook
Neutral meson systems can oscillate between their flavor eigenstates: $K^0 - \bar{K}^0$, $D^0 - \bar{D}^0$ and $B^0_q - \bar{B}^0_q$ with $q = s, d$.

- Loop-induced FCNC processes
- B meson properties equally well accessible to theory and experiment
- Many new exciting experimental measurements, see talks by Alessandro Gaz, Niels Tuning, Ramon Angel Ruiz Fernandez, Anna Lupato, Lukas Novotny, Alibordi Muhammad, Thibaud Humair, . . .
B-meson mixing: Theory

- $B_s^0 - \bar{B}_s^0$ oscillations between flavor eigenstates $|B_s^0\rangle$ and $|\bar{B}_s^0\rangle$

\[
\frac{i}{\hbar} \frac{d}{dt} \left(|B_s^0(t)\rangle \right) = \left(\hat{M} - \frac{i}{2} \hat{\Gamma} \right) \left(|B_s^0(t)\rangle \right),
\]

\[
\hat{M} = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix}, \quad \hat{\Gamma} = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix}
\]

- Diagonalize the matrices

\[
|B_{s,L}\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle
\]

\[
|B_{s,H}\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle
\]

- Mass eigenstates: $|B_{s,L}\rangle$ (lighter) and $|B_{s,H}\rangle$ (heavier)
Physical observables depend on: $|M_{12}|, |\Gamma_{12}|, \phi_s$

- Δm_s: $B^0_s - \bar{B}^0_s$ oscillation frequency
 \[\Delta M_s = M_H - M_L \approx 2|M_{12}| \]
 t quark is dominant in SM, sensitivity to NP in the loops

- $\Delta \Gamma_s$: $B^0_s - \bar{B}^0_s$ width difference
 \[\Delta \Gamma_s = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}| \cos \phi_s \]
 only u and c contribute, precision probe of SM, little room for NP

- ϕ_s: CP-asymmetry in the mixing
 \[a_{fs} = \text{Im} \left(\frac{\Gamma_{12}}{M_{12}} \right) = \left| \frac{\Gamma_{12}}{M_{12}} \right| \sin \phi_s \]
Our interest: $\Delta \Gamma_s$ from $B_s^0 - \bar{B}_s^0$

Experimental value (HFLAV 2020 average)

$$\Delta \Gamma_{\text{exp}} = (0.085 \pm 0.004) \text{ ps}^{-1}$$

Theory prediction (NLO + n_f-piece of NNLO QCD corrections) [Beneke et al., 1999; Ciuchini et al., 2002, 2003; Lenz & Nierste, 2007; Asatrian et al., 2020, 2017]

$$\Delta \Gamma_{\text{OS}} = (0.077 \pm 0.015_{\text{pert.}} \pm 0.002_{B, \bar{B}_S} \pm 0.017_{\Lambda_{QCD}/m_b}) \text{ ps}^{-1}$$

$$\Delta \Gamma_{\text{MS}} = (0.088 \pm 0.011_{\text{pert.}} \pm 0.002_{B, \bar{B}_S} \pm 0.014_{\Lambda_{QCD}/m_b}) \text{ ps}^{-1}$$

Large perturbative uncertainty from the uncalculated NNLO corrections (pert.)

Can be reduced by including relevant 2- and 3-loop QCD corrections

Theory under pressure, full NNLO corrections highly desirable
Overview of the matching calculation

- $|\Delta B| = 1$ EFT ($m_b \ll m_W, m_t$)

 $b \to s c\bar{c}$ [Chetyrkin et al., 1998]

 Representative diagrams in the $|\Delta B| = 1$ EFT needed for the NNLO accuracy

- $|\Delta B| = 2$ EFT (via HQE)

 Matched to the $|\Delta B| = 2$ EFT

\[\Gamma_{12} \sim \frac{1}{m_b^3} \sum_i \left(\frac{\alpha_s}{4\pi} \right)^i \Gamma_3^{(i)} + \frac{1}{m_b^4} \sum_i \left(\frac{\alpha_s}{4\pi} \right)^i \Gamma_4^{(i)} + \ldots \]
B-meson mixing: Calculation

$|\Delta B| = 1$ side of the matching: operator basis

Effective Hamiltonian of the $|\Delta B| = 1$ theory in the CMM basis [Chetyrkin et al., 1998]

$$
\mathcal{H}_{\text{eff}}^{|\Delta B|=1} = \frac{4G_F}{\sqrt{2}} \left[-V_{ts}^* V_{tb}^\dagger \left(\sum_{i=1}^{6} C_i Q_i + C_8 Q_8 \right) - V_{us}^* V_{ub}^\dagger \sum_{i=1}^{2} C_i (Q_i - Q_i^u) \right. \\
+ V_{us}^* V_{cb} \sum_{i=1}^{2} C_i Q_i^{cu} + V_{cs}^* V_{ub} \sum_{i=1}^{2} C_i Q_i^{uc} \left. \right] + \text{h.c.},
$$

Current operators

- $Q_1 = \bar{s}_L \gamma_\mu T^a c_L \bar{c}_L \gamma_\mu T^a b_L,$
- $Q_2 = \bar{s}_L \gamma_\mu c_L \bar{c}_L \gamma_\mu b_L,$
- $Q_1^u = \bar{s}_L \gamma_\mu T^a u_L \bar{u}_L \gamma_\mu T^a b_L,$
- $Q_2^u = \bar{s}_L \gamma_\mu u_L \bar{u}_L \gamma_\mu b_L,$
- $Q_1^{cu} = \bar{s}_L \gamma_\mu T^a u_L \bar{c}_L \gamma_\mu T^a b_L,$
- $Q_2^{cu} = \bar{s}_L \gamma_\mu u_L \bar{c}_L \gamma_\mu b_L,$
- $Q_1^{uc} = \bar{s}_L \gamma_\mu T^a c_L \bar{u}_L \gamma_\mu T^a b_L,$
- $Q_2^{uc} = \bar{s}_L \gamma_\mu c_L \bar{u}_L \gamma_\mu b_L,$

Penguin operators

- $Q_3 = \bar{s}_L \gamma_\mu b_L \sum_q \bar{q} \gamma_\mu q,$
- $Q_4 = \bar{s}_L \gamma_\mu T^a b_L \sum_q \bar{q} \gamma_\mu T^a q,$
- $Q_5 = \bar{s}_L \gamma_\mu_1 \gamma_\mu_2 \gamma_\mu_3 b_L \sum_q \bar{q} \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} q,$
- $Q_6 = \bar{s}_L \gamma_\mu_1 \gamma_\mu_2 \gamma_\mu_3 T^a b_L \sum_q \bar{q} \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} T^a q,$
- $Q_8 = \frac{g_s}{16\pi^2} m_b \bar{s}_L \sigma^{\mu\nu} T^a b_R G_{\mu\nu}^a,$
Effective Hamiltonian of the $|\Delta B| = 1$ theory in the CMM basis [Chetyrkin et al., 1998]

$$\mathcal{H}_{\text{eff}}^{\Delta B = 1} = \frac{4G_F}{\sqrt{2}} \left[-V_{ts}^* V_{tb}^\dagger \left(\sum_{i=1}^{6} C_i Q_i + C_8 Q_8 \right) - V_{us}^* V_{ub}^\dagger \sum_{i=1}^{2} C_i (Q_i - Q_i^u) \right] + V_{us}^* V_{cb} \sum_{i=1}^{2} C_i Q_i^{cu} + V_{cs}^* V_{ub} \sum_{i=1}^{2} C_i Q_i^{uc} \right] + \text{h.c.},$$

- 4-fermion vertices generate Dirac structures with multiple insertions of γ matrices

\[
(P_L)_{ij} \times (P_L)_{kl}, \quad (\gamma^\mu P_L)_{ij} \times (\gamma^\mu P_L)_{kl}, \quad (\gamma^\mu \gamma^\nu P_L)_{ij} \times (\gamma^\mu \gamma^\nu P_L)_{kl}, \quad (\gamma^\mu \gamma^\nu \gamma^\rho P_L)_{ij} \times (\gamma^\mu \gamma^\nu \gamma^\rho P_L)_{kl}, \quad (\gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma P_L)_{ij} \times (\gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma P_L)_{kl}, \quad \ldots
\]

- 4-dimensions: Products of γ matrices reducible using Fierz and Chisholm identities

\[
\gamma^\mu \gamma^\nu \gamma^\rho = g^{\mu \nu} \gamma^\rho + g^{\nu \rho} \gamma^\mu - g^{\mu \rho} \gamma^\nu + i \epsilon^{\mu \nu \rho \sigma} \gamma_\sigma \gamma^5
\]

- d-dimensions: Fierz and Chisholm identities become ambiguous

- Proper treatment using evanescent operators [Dugan & Grinstein, 1991; Herrlich & Nierste, 1995]
B-meson mixing: Calculation

$|\Delta B| = 1$ side of the matching: operator basis

Effective Hamiltonian of the $|\Delta B| = 1$ theory in the CMM basis [Chetyrkin et al., 1998]

$$
\mathcal{H}_{\text{ef}}^{|\Delta B|=1} = \frac{4G_F}{\sqrt{2}} \left[-V_{ts}^* V_{tb}^\dagger \left(\sum_{i=1}^{6} C_i Q_i + C_8 Q_8 \right) - V_{us}^* V_{ub}^\dagger \sum_{i=1}^{2} C_i (Q_i - Q_i^u) \right. \\
+ V_{us}^* V_{cb} \sum_{i=1}^{2} C_i Q_i^{cu} + V_{cs}^* V_{ub} \sum_{i=1}^{2} C_i Q_i^{uc} \left. \right] + \text{h.c.},
$$

$|\Delta B| = 1$ LO evanescent operators

$$
E_{1}^{(1)} = \bar{s}_L \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} T^a_{cb} \bar{c}_L \gamma_1 \gamma_2 \gamma_3 T^a_{cL} b_L - 16Q_1, \\
E_{2}^{(1)} = \bar{s}_L \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} c_L \bar{c}_L \gamma_1 \gamma_2 \gamma_3 b_L - 16Q_2, \\
E_{3}^{(1)} = \bar{s}_L \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} \gamma^{\mu_4} \gamma^{\mu_5} b_L \sum_q \bar{q} \gamma_1 \gamma_2 \gamma_3 \gamma_4 \gamma_5 q - 20Q_5 + 64Q_3, \\
E_{4}^{(1)} = \bar{s}_L \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} \gamma^{\mu_4} \gamma^{\mu_5} T^a_{cb} b_L \sum_q \bar{q} \gamma_1 \gamma_2 \gamma_3 \gamma_4 \gamma_5 T^a_{cL} q - 20Q_6 + 64Q_4
$$
B-meson mixing: Calculation

$|\Delta B| = 1$ side of the matching: operator basis

Effective Hamiltonian of the $|\Delta B| = 1$ theory in the CMM basis [Chetyrkin et al., 1998]

$$
\mathcal{H}_{\text{eff}}^{|\Delta B|=1} = \frac{4G_F}{\sqrt{2}} \left[-V_{ts}^* V_{tb}^\dagger \left(\sum_{i=1}^{6} C_i Q_i + C_8 Q_8 \right) - V_{us}^* V_{ub}^\dagger \sum_{i=1}^{2} C_i (Q_i - Q_i^u) \right. \\
+ \left. V_{us}^* V_{cb} \sum_{i=1}^{2} C_i Q_i^{cu} + V_{cs}^* V_{ub} \sum_{i=1}^{2} C_i Q_i^{uc} \right] + \text{h.c.},
$$

$|\Delta B| = 1$ NLO evanescent operators

$$
E_1^{(2)} = \bar{s}_L \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} \gamma^{\mu_4} \gamma^{\mu_5} T^a c_L \bar{c} \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} \gamma_{\mu_4} \gamma_{\mu_5} T^a b_L - 20E_1^{(1)} - 256Q_1,
$$

$$
E_2^{(2)} = \bar{s}_L \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} \gamma^{\mu_4} \gamma^{\mu_5} c_L \bar{c} \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} \gamma_{\mu_4} \gamma_{\mu_5} b_L - 20E_2^{(1)} - 256Q_2,
$$

$$
E_3^{(2)} = \bar{s}_L \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} \gamma^{\mu_4} \gamma^{\mu_5} \gamma^{\mu_6} \gamma^{\mu_7} b_L \sum_q \bar{q} \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} \gamma_{\mu_4} \gamma_{\mu_5} \gamma_{\mu_6} \gamma_{\mu_7} q - 336Q_5 + 1280Q_3,
$$

$$
E_4^{(2)} = \bar{s}_L \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} \gamma^{\mu_4} \gamma^{\mu_5} T^a b_L \sum_q \bar{q} \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} \gamma_{\mu_4} \gamma_{\mu_5} T^a q - 336Q_6 + 1280Q_4.
$$

Evanescent operators are of $\mathcal{O}(\varepsilon)$, formally vanishing in the $d \rightarrow 4$ limit

However: A pole multiplying tree-level matrix element of an ev. operator $\langle E_i^{(j)} \rangle / \varepsilon$ is $\mathcal{O}(\varepsilon^0)$
$|\Delta B| = 1$ side of the matching: representative diagrams

3-loop $O_{1,2} \times O_{1,2}$ correlators

2-loop $O_{1,2} \times O_{3-6}$ correlators

2-loop $O_{1,2} \times O_{8}$ correlators
\[\Delta B = 2 \] side of the matching: operator basis

- **\(\Delta \Gamma_s \) described by local \(|\Delta B| = 2 \) operators** [Beneke et al., 1999; Lenz & Nierste, 2007; Asatrian et al., 2017]
- **Using Heavy Quark Expansion** [Khoze & Shifman, 1983; Shifman & Voloshin, 1985; Khoze et al., 1987; Chay et al., 1990; Bigi & Uraltsev, 1992; Bigi et al., 1992, 1993; Blok et al., 1994; Manohar & Wise, 1994] (expansion in \(\Lambda_{\text{QCD}}/m_b \)) one arrives at
 \[
 \Gamma_{12} = - (\lambda_c^q)^2 \Gamma_{12}^{cc} - 2\lambda_c^q \lambda_u^q \Gamma_{12}^{uc} - (\lambda_u^q)^2 \Gamma_{12}^{uu}, \quad \lambda_{q'}^q \equiv V_{q'q}^\ast V_{q'b}
 \]
 \[
 \Gamma_{12}^{ab} = \frac{G_F^2 m_b^2}{24\pi M_{B_s}} \left[H^{ab}(z) \langle B_s | Q | \bar{B}_s \rangle + H^{ab}_S(z) \langle B_s | \bar{Q}_S | \bar{B}_s \rangle \right] + \mathcal{O}(\Lambda_{\text{QCD}}/m_b)
 \]
- **Physical \(|\Delta B| = 2 \) operators**
 \[
 Q = \bar{s}_i \gamma^\mu (1 - \gamma^5) b_i \bar{s}_j \gamma^\mu (1 - \gamma^5) b_j \quad \bar{Q}_S = \bar{s}_i (1 - \gamma^5) b_j \bar{s}_j (1 - \gamma^5) b_i
 \]

- **Additional operators needed at intermediate stages** (e.g. basis changes, def. of evanescent operators)
 \[
 \tilde{Q} = \bar{s}_i \gamma^\mu (1 - \gamma^5) b_j \bar{s}_j \gamma^\mu (1 - \gamma^5) b_i \quad \bar{Q}_S = \bar{s}_i (1 - \gamma^5) b_i \bar{s}_j (1 - \gamma^5) b_j
 \]
- **Not shown here:** evanescent \(|\Delta B| = 2 \) operators and the \(1/m_b \) suppressed operator \(R_0 \)
- **\(H(z) \) and \(\tilde{H}_S(z) \):** Wilson coefficients from the perturbative matching of \(|\Delta B| = 1 \) to \(|\Delta B| = 2 \), \(z \equiv m_c^2/m_b^2 \)
- **Nonperturbative ME** \(\langle B_s | Q | \bar{B}_s \rangle \) and \(\langle B_s | \bar{Q}_S | \bar{B}_s \rangle \) (also for \(B_d \) mesons) from QCD/HQET sum rules [Ovchinnikov & Pivovarov, 1988; Reinders & Yazaki, 1988; Korner et al., 2003; Mannel et al., 2011; Grozin et al., 2016; Kirk et al., 2017; King et al., 2019], lattice QCD [Bazavov et al., 2016; Dowdall et al., 2019] or combined [Di Luzio et al., 2019]
$|\Delta B| = 2$ side of the matching: representative diagrams

Wilson coefficients of the $|\Delta B| = 2$ theory determined in the matching to $|\Delta B| = 1$

$$\Gamma_{12}^{ab} = \frac{G_F^2 m_b^2}{24\pi M_{B_s}} \left[H^{ab}(z) \langle B_s | Q | B_s \rangle + \tilde{H}_S^{ab}(z) \langle B_s | \tilde{Q}_S | B_s \rangle \right] + O(\Lambda_{QCD}/m_b)$$
\[|\Delta B| = 1 \text{ contributions needed for NNLO (always 2 insertions from } \mathcal{H}_{\text{eff}} |\Delta B| = 1) \]

\[
C_i O_i \sim \begin{cases}
1 & \text{for } i = 1, 2 \\
\alpha_s & \text{for } i = 3, 4, 5, 6 \quad (C_{3-6} \text{ numerically small}) \\
\alpha_s & \text{for } i = 8 \quad (\text{explicit strong coupling in the definition of } O_8)
\end{cases}
\]

Important scale: \(z \equiv m_c^2/m_b^2 \)

\[\text{LO contributions to } \Delta \Gamma_s \]
- 1-loop \(O_{1-2} \times O_{1-2} \) correlators (\(z \)-exact) [Hagelin, 1981; Franco et al., 1982; Chau, 1983; Buras et al., 1984; Khoze et al., 1987; Datta et al., 1987, 1988]

\[\text{NLO contributions to } \Delta \Gamma_s \ (z \text{-exact}) \]
- 2-loop \(O_{1-2} \times O_{1-2} \) correlators (\(z \)-exact) [Beneke et al., 1999]
- 1-loop \(O_{1-2} \times O_{3-6} \) correlators (\(z \)-exact) [Beneke et al., 1999]
- 1-loop \(O_{1-2} \times O_8 \) correlators (\(z \)-exact) [Beneke et al., 1999]
$|\Delta B| = 1$ contributions needed for NNLO (always 2 insertions from $H_{\text{eff}}^{\Delta B=1}$)

$$C_i O_i \sim \begin{cases}
1 & \text{for } i = 1, 2 \\
\alpha_s & \text{for } i = 3, 4, 5, 6 \quad (C_{3-6} \text{ numerically small}) \\
\alpha_s & \text{for } i = 8 \quad (\text{explicit strong coupling in the definition of } O_8)
\end{cases}$$

Important scale: $z \equiv m_c^2/m_b^2$

NNLO contributions to $\Delta \Gamma_s$

- 3-loop $O_{1-2} \times O_{1-2}$ correlators [Asatrian et al., 2017, 2020] (n_f piece only, $O(z^3)$)
- 2-loop $O_{1-2} \times O_{3-6}$ correlators [Asatrian et al., 2017, 2020] (n_f piece only, z-exact)
- 2-loop $O_{1-2} \times O_8$ correlators [Asatrian et al., 2017, 2020] (n_f piece only, z-exact)
- 1-loop $O_{3-6} \times O_{3-6}$ correlators (z-exact) [Beneke et al., 1996]
- 1-loop $O_{3-6} \times O_8$ correlators [Asatrian et al., 2017, 2020] (n_f piece only, z-exact)
- 1-loop $O_8 \times O_8$ correlators [Asatrian et al., 2017, 2020] (n_f piece only, z-exact)

This work

- Full ($n_f + \text{non-}n_f$) results for all 2-loop correlators at $O(z)$ (including $O_8 \times O_8 \Rightarrow N^3\text{LO}$)
- Full ($n_f + \text{non-}n_f$) results for the 3-loop $O_{1-2} \times O_{1-2}$ at $O(z^0)$
- WIP: Final checks for the 3-loop result, higher order expansions in z, possibly z-exact results for selected correlators
Calculation

Matching strategy
- Matching done on-shell: $p_b^2 = m_b^2$
- The s-quark mass is neglected $\Rightarrow p_s = 0$
- Asymptotic expansion in $z \equiv m_c^2 / m_b^2$ (at first up to $\mathcal{O}(z)$ for 2-loop and $\mathcal{O}(z^0)$ for 3-loop)
- Only the imaginary part of the $|\Delta B| = 1$ diagrams enters the matching

Regularization
- Dimensional regularization used both for UV- and IR-divergences
- Cross-check: massive gluons in IR-divergent diagrams at 2-loops
- $\varepsilon_{\text{UV}} + m_g$: renormalized amplitudes manifestly finite \Rightarrow the limit $d \rightarrow 4$ is safe
- $\varepsilon = \varepsilon_{\text{UV}} = \varepsilon_{\text{IR}}$: products of $1/\varepsilon_{\text{IR}}$ and evanescent ME are of $\mathcal{O}(\varepsilon^0)$
NLO matching with $\varepsilon = \varepsilon_{IR} = \varepsilon_{UV}$ (no gluon mass) [Ciuchini et al., 2002]

- Normally, only the matching coefficients of physical $|\Delta B| = 2$ operators are relevant
- Here matching coefficients of evanescent operators are also needed (at intermediate stages)
- $|\Delta B| = 2$ matching coefficients obtain $O(\varepsilon)$ pieces

\[
C = f_0^{(0)} + \varepsilon f_1^{(0)} + \frac{\alpha_s}{4\pi} f_0^{(1)}, \quad C_E = f_{E,0}^{(0)} + \varepsilon f_{E,1}^{(0)} + \frac{\alpha_s}{4\pi} f_{E,0}^{(1)}
\]

- LO matching must be carried out up to $O(\varepsilon)$: fixes $f_0^{(0)}, f_1^{(0)}, f_{E,0}^{(0)}, f_{E,1}^{(0)}$
- At NLO we only need $O(\varepsilon^0)$
- Upon inserting $f_0^{(0)}, f_1^{(0)}, f_{E,0}^{(0)}, f_{E,1}^{(0)}$ at NLO all $1/\varepsilon_{IR}$ poles must cancel.
- Finally, the difference

\[
A_{|\Delta B|=1}^{\text{ren}} - A_{|\Delta B|=2}^{\text{ren}}
\]

is manifestly finite \Rightarrow determine $f_0^{(1)}$

- Only $f_0^{(0)}$ and $f_0^{(1)}$ enter the physical matching coefficient
- What about $f_{E,1}^{(0)}$? Not needed at NLO, must be determined for the NNLO calculation!
- At NNLO, the LO matching must be done up $O(\varepsilon^2)$, the NLO matching up to $O(\varepsilon)$
- The explicit cancellation of IR poles (and of ξ) is a highly nontrivial cross-check of the whole calculation
B-meson mixing: Calculation

All computations done using our well-tested automatic setup

- Diagram generation with QGRAF [Nogueira, 1993]
- Insertion of Feynman rules and topology identification using Q2E/EXP [Seidensticker, 1999; Harlander et al., 1998] or TAPIR [Gerlach, Herren, 2022]
- Feynman amplitude evaluation: in-house CALC setup written in FORM [Ruijl et al., 2017]
- IBP-reduction: FIRE 6 [Smirnov & Chuharev, 2020]
- All master integrals checked numerically using FIESTA [Smirnov, 2016] and pySecDec [Borowka et al., 2018]

Cross-checks of selected intermediate results using FeynArts [Hahn, 2001], FeynRules [Christensen & Duhr, 2009; Alloul et al., 2014] and FeynCalc [VS et al., 2020]

Two complementary approaches to the treatment of tensor integrals in FORM

- Explicit decomposition formulas (1 ext. momentum, max. rank 10), calculated using FeynCalc and FERMAT [Lewis]
- Projections to the occurring 4-fermion Dirac structures

\[\{(P_L)_{ij}, (\gamma^\mu P_L)_{ij}, (\gamma^\mu \gamma^\nu P_L)_{ij}, \ldots\} \otimes \{(P_L)_{kl}, (\gamma^\mu P_L)_{kl}, (\gamma^\mu \gamma^\nu P_L)_{kl}, \ldots\} \]

- Both methods lead to the same results!
New on-shell 3-loop integrals with massive (solid) lines

Only imaginary parts are relevant and turn out to be very simple

Appearing constants

\[\pi, \ln(2), \zeta_2, \zeta_3, \zeta_4, Cl_2(\pi/3), \sqrt{3}, \]
\[\text{Li}_4(1/2), \ln \left((1 + \sqrt{5})/2 \right) \]

Real parts (obtained as a byproduct) more complicated but irrelevant for \(\Delta \Gamma_s \)
Handling of master integrals facilitated using new **FeynCalc** functions added in the course of this project (see my talk at ACAT 2021 next Wednesday)

Graph representation from propagator representation: FCLoopIntegralToGraph, FCLoopGraphPlot

Derivation of the Feynman parametrization: FCFeynmanParametrize

Mappings between master integrals: FCLoopFindIntegralMappings

Official in the upcoming **FeynCalc** 10, however already publicly available and documented
New contributions to Γ_{12}^{s} computed in the course of this project ($z = m_c^2/m_b^2$)

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Literature result</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{1,2} \times Q_{3-6}$</td>
<td>2 loops, z-exact, n_f-part only [Asatrian et al., 2020]</td>
<td>2 loops, $O(z)$, full</td>
</tr>
<tr>
<td>$Q_{1,2} \times Q_{8}$</td>
<td>2 loops, z-exact, n_f-part only [Asatrian et al., 2020]</td>
<td>2 loops, $O(z)$, full</td>
</tr>
<tr>
<td>$Q_{3-6} \times Q_{3-6}$</td>
<td>1 loop, z-exact, full [Beneke et al., 1996]</td>
<td>2 loops, $O(z)$, full</td>
</tr>
<tr>
<td>$Q_{3-6} \times Q_{8}$</td>
<td>1 loop, z-exact, n_f-part only [Asatrian et al., 2020]</td>
<td>2 loops, $O(z)$, full</td>
</tr>
<tr>
<td>$Q_{8} \times Q_{8}$</td>
<td>1 loop, z-exact, n_f-part only [Asatrian et al., 2020]</td>
<td>2 loops, $O(z)$, full</td>
</tr>
<tr>
<td>$Q_{1,2} \times Q_{1,2}$</td>
<td>3 loops, $O(\sqrt{z})$, n_f-part only [Asatrian et al., 2017]</td>
<td>3 loops, $O(z^0)$, full</td>
</tr>
</tbody>
</table>
All 2-loop contributions to the NNLO correction already computed and cross-checked

New theory predictions for the width difference $\Delta \Gamma_s$ and the CP asymmetry a^{s}_{fs} under way

\[
\frac{\Delta \Gamma_s}{\Delta M_s} = -\text{Re} \left(\frac{\Gamma_{12}^s}{M_{12}^s} \right), \quad a^{s}_{fs} = \text{Im} \left(\frac{\Gamma_{12}^s}{M_{12}^s} \right)
\]

Ingredients

\[
\Gamma_{12}^s = -(\lambda_t^s)^2 \left[\Gamma_{12}^{s,cc} + 2\frac{\lambda_u^s}{\lambda_t^s} (\Gamma_{12}^{s,cc} - \Gamma_{12}^{s,uc}) + \left(\frac{\lambda_u^s}{\lambda_t^s} \right)^2 (\Gamma_{12}^{s,uu} + \Gamma_{12}^{s,cc} - 2\Gamma_{12}^{s,uc}) \right]
\]

\[
\Gamma_{s,12}^{ab} = \frac{G_F^2 m_b^2}{24\pi M_{B_s}^2} \left[H^{ab}(z) \langle B_s | Q | \bar{B}_s \rangle + \tilde{H}^{ab}(z) \langle B_s | \bar{Q}_S | \bar{B}_s \rangle \right] + \mathcal{O}(\Lambda_{\text{QCD}}/m_b)
\]

\[
M_{12} = (\lambda_t^s)^2 \frac{G_F^2 M_{B_s}}{12\pi^2} M_W^2 \hat{\eta}_B S_0 \left(\frac{m_t^2}{M_W^2} \right) f_{B_s}^2 B_{B_s}
\]

Cancellation of $(\lambda_t^s)^2 = (V_{ts}^* V_{tb}^\dagger)^2$, f_{B_s}, M_{B_s} and to large extent bag parameters in the ratio Γ_{12}^s / M_{12}^s

Following [Asatrian et al., 2020] we can can calculate

\[
\Delta \Gamma_s = \left(\frac{\Delta \Gamma_s}{\Delta M_s} \right) \Delta M_s^{\exp}
\]

$|V_{cb}|$ controversy irrelevant!
Theoretical predictions for the $\overline{\text{MS}}$ and pole schemes

- m_b^2 in the prefactor of Γ_{12} treated as $(m_b^{\text{OS}})^2$ in the pole scheme and $(m_b^{\text{MS}})^2$ in the $\overline{\text{MS}}$ scheme
- In both schemes we use $\overline{z} = (m_c^{\text{MS}}/m_b^{\text{MS}})^2$

Numerical input [Tanabashi et al., 2018; Dowdall et al., 2019; Bazavov et al., 2018; Amhis et al., 2021]

\[
M_{B_s} = 5366.88 \text{ MeV} \quad f_{B_s} = (0.2307 \pm 0.0013) \text{ GeV},
\]

\[
B_{B_s} = 0.813 \pm 0.034, \quad \tilde{B}'_{S,B_s} = 1.31 \pm 0.09,
\]

\[
\frac{\lambda^s_u}{\lambda^s_t} = -(0.00865 \pm 0.00042) + (0.01832 \pm 0.00039)i
\]

\[
\Delta M_s^\text{exp} = (17.749 \pm 0.020) \text{ ps}^{-1}
\]

Numerical estimate on the impact of the new 2-loop $O_{1,2} \times O_{3-6}$ contribution [Gerlach, Nierste, VS, Steinhauser, 2021]

1-loop (already known):
\[
\frac{\Delta \Gamma_{s,12 \times 36,\alpha_s^0}}{\Delta \Gamma_s} = 7.0\% \quad \text{(pole)}
\]

full 2-loops (new):
\[
\frac{\Delta \Gamma_{s,12 \times 36,\alpha_s}}{\Delta \Gamma_s} = 0.2\% \quad \text{(pole)},
\]

\[
\frac{\Delta \Gamma_{s,12 \times 36,\alpha_s^0}}{\Delta \Gamma_s^\text{\overline{MS}}} = 6.1\% \quad \text{(MS)}
\]

\[
\frac{\Delta \Gamma_{s,12 \times 36,\alpha_s}}{\Delta \Gamma_s^\text{\overline{MS}}} = 1.4\% \quad \text{(MS)}
\]
Summary

- Experimental precision of $\Delta \Gamma_s$ calls for the NNLO calculation!
- We calculated all building blocks needed to obtain the NNLO correction to $B^0_s - \bar{B}^0_s$ mixing
- All the occurring 3-loop MI from the current-current contribution calculated analytically (for $m_c = 0$)
- The result for the 2-loop current-penguin contribution already published [Gerlach, Nierste, VS, Steinhauser, 2021]

Outlook

- Results for all the remaining 2-loop contributions and the 3-loop current-current piece under way
- New theory predictions for $\Delta \Gamma_s$ and the CP asymmetry $a_{\ell s}^s$
- Higher order expansions in $z \equiv m_c^2 / m_b^2$, ideally z-exact results at least for the 2-loop contributions