New physics in B meson mixing: future sensitivity and limitations

Luiz VALE SILVA (IFIC, UV - CSIC)

[Charles, Descotes-Genon, Ligeti, Monteil, Papucci, Trabelsi, LVS, PRD 102, 056023 (2020), arXiv:2006.04824]

CKM 2021, Melbourne (virtual), 22-26 November 2021

The Standard Model (SM) and Beyond

- Flavour physics played a central role in the formulation of the SM (new fermion generations, manifestation of CP Violation, etc.)
- Many flavour observables enjoy the status of precision physics, thanks to progress in different fronts (e.g. <u>QCD inputs</u>)
- Flavour physics can play a leading role in addressing the questions left open by the SM, and reveal New Physics sectors

Hierarchies in the spectrum of particles and CKM matrix:

Reach to New Physics (NP)

- Low-energy observables → probe <u>energy scales much beyond the reach</u> of direct searches
- The bounds derived shape NP candidates
- If deviation seen, possible NP manifestation!

Current status of flavour

 Overall agreement w/ the SM, but some [¬] <u>exciting tensions</u> (e.g. "B-anomalies")

[CKMfitter update as of Spring '21: see talk later today by Wenbin Qian]

- Flavour is one of the main physics cases for <u>future experiments</u>
- Future data will guide the field, <u>testing present</u> anomalies and possibly <u>revealing new ones</u>

New era of flavour ahead

		LHC era	HL-LHC era		
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)
ATLAS, CMS	25 fb ⁻¹	150 fb ⁻¹	300 fb ⁻¹	\rightarrow	3000 fb ⁻¹
LHCb	3 fb ⁻¹	9 fb ^{−1}	23 fb ⁻¹	50 fb ⁻¹	*300 fb ⁻¹

* assumes a future LHCb upgrade to raise the instantaneous luminosity to 2x10³⁴ cm⁻²s⁻¹

[\uparrow See arXiv:1808.08865] [From arXiv:1808.10567 \rightarrow]

- Expression of interest for an LHCb Upgrade II
- Belle II: 50x the Belle and nearly 100x the BaBar data sets; ongoing discussions about upgrade

Luiz VALE SILVA (IFIC, UV - CSIC)

NP in B meson mixing

- HERE we address present and future bounds on NP in $|\Delta B|=2$, and discuss future limitations
- |\[\triangle B|=2: NP competes with suppressions in the SM (GIM/loop), and enjoy the status of precision physics

Not discussing K, nor D meson mixing

[See: PRD 89, 033016 (2014), arxiv:1309.2293]

• Combine projections for future data: need global fit including "tree" and "loop" observables

[see e.g. CKMfitter]

NP in B meson mixing

• NP in |**A**B|=2:

Bag parameters, ↓ decay constants

NP parameters

- h_d and h_s set sizes $M_{12} = M_{12}^{SM} \times (1 + h_c e^{2i\sigma})$
- Assumptions:
 - No NP in $|\Delta F| = 1$:
 - tree level in SM (γ , $|V_{ub}|,\,|V_{cb}|,\,...)$ free of NP
 - NP is short-distance
 - Unitarity of the CKM 3x3 matrix
 - Unrelated NP in B_d and B_s systems

[See: PRD 89, 033016 (2014), arxiv:1309.2293]

• SMEFT: four-quark operators of different chiral structures

Present status of NP in B meson mixing

- Agreement with the SM ($h_d = h_s = 0$) at $\sim 1\sigma$
- Allowed size for NP at the level of O(20%)! ⁻
- Extractions of ρ and η (Wolfenstein parm.) degrade by factor ~3

Status as of Summer '19

Benchmarks for the future

- Phase I: LHCb-upgrade I 50/fb, & Belle II 50/ab (late 2020s)
- Phase II: LHCb-upgrade II 300/fb, & Belle II upgrade 250/ab (late 2030s)
- Phase III: Phase II + FCC-ee

FCC-ee: initial phase of FCC; operates at <u>different EW thresholds</u>: **5x10¹² Z bosons**, **10⁸ WW pairs**, >10⁶ Higgses, >10⁶ tt pairs

Table S.4 Expected productionyields for b-flavoured particlesat FCC-ee at the Z run, and atBelle II (50 ab^{-1}) forcomparison	Particle production (10 ⁹)	${ m B}^0/{ m ar B}^0$	B^+/B^-	${ m B}^0_s/{ m ar B}^0_s$	$\Lambda_b/\bar{\Lambda}_b$	cē	$\tau^+\tau^-$
	Belle II	27.5	27.5	n/a	n/a	65	45
	FCC-ee	1000	1000	250	250	550	170

[FCC Physics Opportunities, Conceptual Design Report] [Flavour cases: Monteil]

Experimental and theoretical inputs

	Central	Uncertainties			Reference	
	values	Current [28]	Phase I	Phase II	Phase III	Phases I-III
V _{ud}	0.97437	± 0.00021	id	id	id	[28]
$ V_{us} f_{+}^{K\to\pi}(0)$	0.2177	± 0.0004	id	id	id	[28]
V _{cd}	0.2248	± 0.0043	± 0.003	id	id	[40,41]
V _{cs}	0.9735	± 0.0094	id	id	id	[28,40,41]
$\Delta m_d \text{ [ps}^{-1}\text{]}$	0.5065	± 0.0019	id	id	id	[17]
$\Delta m_s \text{ [ps}^{-1}\text{]}$	17.757	± 0.021	id	id	id	[17]
$ V_{cb} _{SL} \times 10^3$	42.26	± 0.58	± 0.60	± 0.44	id	[29]
$ V_{cb} _{W \to cb} \times 10^3$	42.20				± 0.17	[34–36]
$ V_{ub} _{SL} \times 10^3$	3.56	± 0.22	± 0.042	± 0.032	id	[29]
$ V_{ub}/V_{cb} $ (from Λ_b)	0.0842	± 0.0050	± 0.0025	± 0.0008	id	[30]
$\mathcal{B}(B \rightarrow \tau \nu) \times 10^4$	0.83	± 0.24	± 0.04	± 0.02	± 0.009	[29,34]
$\mathcal{B}(B \to \mu \nu) \times 10^6$	0.37		± 0.03	± 0.02	id	[29]
$\sin 2\beta$	0.680	± 0.017	± 0.005	± 0.002	± 0.0008	[29,30,34]
α[°] (mod 180°)	91.9	± 4.4	± 0.6	id	id	[29]
γ[°] (mod 180°)	66.7	± 5.6	± 1	± 0.25	± 0.20	[29,30,34]
β_s [rad]	-0.035	± 0.021	± 0.014	± 0.004	± 0.002	[30,34]
$A_{\rm SL}^d \times 10^4$	-6	± 19	± 5	± 2	± 0.25	[14,17,34,37]
$A_{SL}^s \times 10^5$	3	± 300	± 70	± 30	± 2.5	[14,17,34,37]
\bar{m}_t [GeV]	165.30	±0.32	id	id	± 0.020	[28,34]
$\alpha_s(m_Z)$	0.1185	± 0.0011	id	id	± 0.00003	[28,34]
$f_{+}^{K \to \pi}(0)$	0.9681	± 0.0026	± 0.0012	id	id	[30]
f_K [GeV]	0.1552	± 0.0006	± 0.0005	id	id	[30]
f_{B_s} [GeV]	0.2315	± 0.0020	± 0.0011	id	id	[30]
B_{B_s}	1.219	± 0.034	± 0.010	± 0.007	id	[30]
f_{B_s}/f_{B_d}	1.204	± 0.007	± 0.005	id	id	[30]
B_{B_s}/B_{B_d}	1.054	± 0.019	± 0.005	± 0.003	id	[30]
$\tilde{B}_{B_s}/\tilde{B}_{B_d}$	1.02	± 0.05	± 0.013	id	id	[30,42,43]
$\tilde{B}_{B_{c}}$	0.98	± 0.12	± 0.035	id	id	[30,42,43]
η_B	0.5522	± 0.0022	id	id	id	[44]

Luiz VALE SILVA (IFIC, UV - CSIC) - "NP in B meson mixing"

arXiv:2106.12168 arXiv:2

912 Q m

also EPJPlus 1 EPJPlus 136, 9 EР

and and

Experimental and theoretical inputs

- Caveat: many experimental sensitivity studies are simplistic or not yet available
- $|V_{ub}|_{SL}$ & $|V_{cb}|_{SL}$: dominance of stat. uncs. (Belle II) $|V_{cb}|$ accuracy ~0.4% @ FCC-ee: W \rightarrow bc [Schune, Monteil]
- Future accuracy in angles (α , β , β_s , γ) ~< 1°
- Phases I and II uncs. for Lattice QCD (form-factors, bag parameters) < 1%

Literature discusses Lattice QCD projections up to Phase II

Future improvements

SM reference: <u>shift the central values</u> Compared to Current, improvement by factor >3 (5) at Phase I (II)

Sensitivities	Summer 2019	Phase I	Phase II	Phase III
h_d	0.26	0.073	0.049	0.038
h_s	0.12	0.065	0.044	0.031

Future reach to NP in B meson mixing

$$\frac{C_{ij}^2}{\Lambda^2} (\bar{q}_{i,L} \gamma_\mu q_{j,L})^2, \qquad h \simeq 1.5 \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \left(\frac{4.5 \text{ TeV}}{\Lambda}\right)^2, \\ \sigma = \arg(C_{ij} \lambda_{ij}^{t*}),$$

- In the absence of suppression mechanisms: NP scale >> TeV
- Possible flavour and loop suppressions: alleviate bounds on NP

		Sensitivity for Summer 2019 [TeV]		Phase I Sensitivity [TeV]		Phase II Sensitivity [TeV]	
Couplings	NP loop order	B_d mixing	B_s mixing	B_d mixing	B_s mixing	B_d mixing	B_s mixing
$ C_{ij} = V_{ti}V_{tj}^* $	Tree level	9	13	17	18	20	21
(CKM-like)	One loop	0.7	1.0	1.3	1.4	1.6	1.7
$ C_{ij} = 1$	Tree level	1×10^{3}	3×10^{2}	2×10^{3}	4×10^2	2×10^{3}	5×10^{2}
(No hierarchy)	One loop	80	20	2×10^2	30	2×10^2	40

Sensitivity to SMEFT operators

ΔF=2 dim.-8: sensitivity to multi-TeV NP effects

|**ΔF**|=2 dim.-6 operators: talk by J. Aebischer

• (|**Δ**F|=1 dim.-6)² => |ΔF|=2 dim.-8 operators

> NP bag parameters: [ETM '15, FNAL-MILC '16]

[LVS, work in preparation]

Bottlenecks

Necessary improvements beyond current expectations for enhancing sensitivity to NP:

- Lattice QCD (also short-distance QCD corrections)
- **V**_{cb}, overall normalization (Wolfenstein parameter A)
- Individual impacts on h_d and h_s : O(20-30)%

Discovery prospects

B meson mixing observables also provide potential discovery for NP

Conclusions

- Flavour physics: crucial in shaping the SM, but also in looking for candidates of NP
- △B|=2: <u>only one flavour aspect</u> of future experimental and theoretical progress
- Allowed NP in B meson mixing still large: bounds will largely improve
- Identified future limitations:
 LQCD and |V_{cb}|

Many thanks for your attention!

BACK UP!

Experimental quantities vs. theoretical ones

Observables considered in the fit that are modified by NP in $|\Delta B|=2$:

$$\Delta_q = |\Delta_q| e^{i2\Phi_q^{\rm NP}}$$

parameter	prediction in the presence of NP
Δm_q	$ \Delta_q^{\rm NP} imes \Delta m_q^{ m SM}$
2eta	$2\beta^{\text{SM}} + \Phi^{\text{NP}}_d$
$2eta_s$	$2\beta_s^{\text{SM}} - \Phi_s^{\text{NP}}$
2lpha	$2(\pi - \beta^{\text{SM}} - \gamma) - \Phi^{\text{NP}}_d$
$\Phi_{12,q} = \operatorname{Arg}\left[-\frac{M_{12,q}}{\Gamma_{12,q}}\right]$	$\Phi_{12,q}^{\scriptscriptstyle\mathrm{SM}}+\Phi_q^{\scriptscriptstyle\mathrm{NP}}$
A^q_{SL}	$\frac{\Gamma_{12,q}}{M_{12,q}^{\mathrm{SM}}} \times \frac{\sin(\Phi_{12,q}^{\mathrm{SM}} + \Phi_q^{\mathrm{NP}})}{ \Delta_q^{\mathrm{NP}} }$
$\Delta\Gamma_q$	$2 \Gamma_{12,q} \times \cos(\Phi_{12,q}^{\rm SM} + \Phi_q^{\rm NP})$

Different representation

Acknowledgements

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101031558"