

EWP decays with missing energy and LFV at Belle and Belle II

Tao Luo (Fudan University)
On Behalf of the Belle/Belle II Collaboration
Nov. 22 - 26, 2021

11th International Workshop on the CKM Unitarity Triangle (CKM 2021)

Melbourne, Australia, online

SuperKEKB Accelerator

- Reduction in the beam size by 1/20 at the IP.
- ➤ 1.5 times increase in beam currents.

Targets:

Peak luminosity: $6 \times 10^{35} cm^{-2} s^{-1}$

Integrated luminosity: 50ab-1 by 2031

he Belle/Belle II Detector

Status of Belle II data taking

- ➢ Belle collected data ~ 1 ab⁻¹
- Belle II collected data 215 fb⁻¹
 - √ ~30% of Belle data
 - √ ~50% of BaBar data
- Peak luminosity reached

 3.12 x 10³⁴ cm⁻² s⁻¹

 with beam current product factor 3.5 lower than KEKB

 (nanobeam enhancement)
 - √ 50% higher than previous world record by KEKB
 - √ factor 3 higher than KEKB (Belle)
 and PEP-II (BaBar) design
 luminosity
- 89.5% data taking efficiency during the pandemic situation (remote operation shifts)

LFV AND B Anomalies

- Lepton Flavor Violating (LFV) decays:
 - ✓ Forbidden in the Standard Model w/o neutrino-oscillation
 - ✓ Can occur via ν mixing but are highly suppressed $(\frac{m_{\nu}^2}{m_W^2})$
 - well beyond any experimental sensitivity
- Recent measurements of b-hadron decays have provided experimental indications of the lepton flavor universality violation (LFUV) - deviations from:
 - ✓ μ /e universality in b \rightarrow sll neutral-current transitions BSM
 - \checkmark τ/μ (and τ/e) universality in b \rightarrow clv charged-current transitions
- LFUV is often accompanied by lepton flavor violation (LFV) in theoretical models (PRL 114 (2015), 091801)
- The observation of LFV in the charged sector would be a clear sign of physics beyond the Standard Model!

Electroweak Penguin decays

- √ forbidden at tree level
- √ occur via box and loop diagrams.
- √ branching fractions are very small, i.e. < 10⁻⁵
- \rightarrow

- √ New particle might appear in the loop
- ✓ Can also decay via tree diagram for some of the new particles.
- ✓ NP contribution to the Wilson coefficients
- ✓ Provide many observables to probe for new physics: angular, asymmetries, etc.

Recent results on EWP decays at Belle / Belle II

Belle

- ✓ Search for $B^0 \to K^*\tau^+\tau^-$ at Belle (arXiv: 2110. 03871)
- ✓ Search for $B^0_{(d)} \rightarrow \tau^{\mp} \ell^{\pm}$ at Belle (arXiv: 2108. 11649)

➤ Belle II

✓ Search for $B^+ \to K^+ \nu \bar{\nu}$ at Belle II (Phys. Rev. Lett. 127 (2021) 181802)

$B^0 o K^* au^+ au^-$ at Belle

- ightharpoonup Highly suppressed in the SM and can only proceed via FCNC, with predicted B of order $\mathcal{O}(10^{-7})$
- With the effect of NP, \mathcal{B} can be at level of 10^{-4} [PRL 120, 181802 (2018)]
- The BaBar collaboration sets an upper limit for B⁺ \rightarrow K⁺ τ ⁻ [Phys. Rev. Lett. 118, 031802 (2017].
 - \checkmark B(B⁺ → K⁺ τ⁺ τ⁻) < 2.25 x 10⁻³ at 90% C.L. (using 471 million $B\bar{B}$ pairs)
- ightharpoonup Currently, no limit is set for $B^0 \to K^* \tau^+ \tau^-$ decay mode
- The presence of at least two neutrinos in the final state originating from τ lepton decays make full reconstruction of the decay impossible.

Search for $B^0 o K^* au^+ au^-$ at Believ

- Tag side $(B_{tag}) \rightarrow$ reconstructed in 489 exclusive B⁰ meson decay channels using hierarchal neural networks algorithm. Full Belle dataset: 711 fb⁻¹
- Searching signal in the rest of event.
 - ✓ Require 4 charged tracks, net charge=0.
- Supressing background
 - √ requirement on mass of tau pair, mass of the two leptons,
 - \checkmark veto events having K_S , π^0 , and more than one K_L
- More background suppression using missing mass squared (M^2_{miss}) and $M(K^{*0}\pi)$ variables (depending on final state particles).

Results for $B^0 o K^* au^+ au^-$ at Belle

arXiv: 2110. 03871, submitted to PRD

Binned extended maximum-likelihood fit to the extra calorimeter energy, E_{ECL}^{extra} distribution.

- E_{ECL}^{extra} is the total energy of the neutral clusters detected in the ECL not associated with either B_{tag} or B_{sig}. "E_{missing}"
- The overall selection efficiency, $\epsilon = 1.2 \times 10^{-5}$
- $N_{sig} = -4.9 \pm 6.0$
- The upper limit: $\checkmark \quad \mathcal{B}(B^0 \to K^{*0}\tau^+\tau^-) < 2.0 \times 10^{-3} \text{ at}$ 90% C.L.
- The first experimental limit on the decay $B^0 \to K^{*0} \tau^+ \tau^-$.

$$B^{0}_{(d)} \rightarrow \tau^{\mp} \ell^{\pm}$$

Forbidden in the SM without neutrino oscillations, but in principle it can occur via neutrino mixing. The rate is significantly below current and future experimental sensitivities (~10⁻⁴⁰).

NP models such as leptoquarks [Mod. Phys. Lett. A 33, 1850019 (2018)] or Higgs-mediation in supersymmetric seesaw models [Phys. Lett. B 549, 159 (2002)] give rise to branching fractions ($^{\sim}10^{-9} - 10^{-10}$).

Experimental status

90 % C.L.	CLEO (9.6 M BB) <u>Phys.Rev.Lett. 93, 241802</u> (2004)	BABAR (378 M BB) <u>Phys. Rev. D 77, 091104(R)</u> (2008)	LHCb (3fb ⁻¹ of pp collisions) <u>Phys. Rev. Lett. 123, 211801</u> (2019)
$\mathcal{B}(B_{(d)}{}^0 ightarrow au^{\mp} e^{\pm})$	< 1.3×10 ⁻⁴	< 2.8×10 ⁻⁵	_
$\mathcal{B}(B_{(d)}{}^0 o au^\mp \mu^\pm)$	< 3.8×10 ⁻⁵	< 2.2×10 ⁻⁵	< 1.2×10 ⁻⁵

Because $B^0 \to \tau^{\mp} \ell^{\pm}$ are two-body decays, the momentum of the τ lepton can be inferred from the momentum of $B_{\rm sig}$ and the momentum of ℓ^{\pm} ; thus the τ^{\mp} does not need to be reconstructed.

Fully reconstructed B

meson

$$p_{B_{SIG}} = -p_{B_{TAG}}, \quad E_{B_{SIG}} = E_{BEAM}$$
 $\vec{p}_{miss} = \vec{p}_{B_{SIG}} - \vec{p}_{l}$
 $E_{miss} = E_{BEAM} - E_{l}$

$$M_{miss} = \sqrt{E_{miss}^2 - \left(\vec{p}_{miss}\right)^2}$$

arXiv: 2108. 11649, accepted by PRD (letter)

Applied the same event selection criteria used in $B^0 \rightarrow \tau \mu$. D/D^* are missing

Signal Efficiencies:

 $B^0 \to D \pi$: 1.0 x 10⁻³ $B^0 \to D^*\pi$: 1.0 x 10⁻³

Nsig

 $B^{\theta} \to D \pi : 2136.4 \pm 71.0$

 $B^0 \to D^* \pi : 2071.1 \pm 74.0$

Branching fraction \times 10⁻³

Mode	World average	This measurement	
$B^0 \rightarrow D^- \pi^+$	$2.52 \pm 0.13 \text{ (stat+sys)}$	$2.54 \pm 0.11 \text{ (stat)}$	
$B^0 \rightarrow D^{*-} \pi^+$	$2.74 \pm 0.13 \text{ (stat+sys)}$	$2.67 \pm 0.12 \text{ (stat)}$	

arXiv: 2108. 11649, accepted by PRD (letter)

 \triangleright Unbinned extended maximum-likelihood fit to the M_{miss} distribution.

Signal Efficiency: 1.1 x 10⁻³

$$N_{sig} = 1.8^{+8.2}_{-7.6}$$

Signal Efficiency: 1.0 x 10⁻³

$$N_{sig} = 0.3^{+8.8}_{-8.2}$$

The upper limits: $\mathcal{B}(B^0 \to \tau \mu) < 1.5 \times 10^{-5}$, $\mathcal{B}(B^0 \to \tau e) < 1.6 \times 10^{-5}$ at 90 C.L. Electron mode: the most stringent limit to date

Search for $B^+ o K^+ v \overline{v}$ at Belle

Rare decay belonging to family $b \rightarrow \frac{\text{Phys. Rev. Lett. 127 (2021) 181802}}{sll}$ with SM $\mathcal{B}(B^+ \to K^+ v \bar{v}) = (4.6 \pm 0.5) \times 10^{-6}$

- Sensitive to BSM physics
- Not observed yet! Published limits set by other B-factories use either SL or Hadronic tag reconstruction
- This measurement uses novel inclusive tag approach (see next slide)
- SM reference taken from Buras et al: https://arxiv.org/abs/1409.4557

Experiment	Year	Observed limit on ${ m BR}(B^+ o K^+ uar u)$	Approach	Data[fb ⁻¹]
BABAR	2013	$< 1.6 \times 10^{-5}$ [Phys.Rev.D87,112005]	SL + Had tag	429
Belle	2013	$< 5.5 \times 10^{-5}$ [Phys.Rev.D87,111103(R)]	Had tag	711
Belle	2017	$< 1.9 \times 10^{-5}$ [Phys.Rev.D96,091101(R)]	SL tag	711

Search for $B^+ o K^+ v \overline{v}$ at Belle

63 fb⁻¹ data set

- \triangleright Signal reconstructed as the highest p_T track (correct match $\simeq 80 \%$)
- Inclusive reconstruction of the rest of the event (ROE)
- New technique: Two consecutive BDTs are trained and applied to suppress the backgrounds (FastBDT algorithm), 51 input parameters
 - ✓ BDT #1 for the event selection
 - ✓ BDT #2 for background suppression
- No signal yet: upper limit determined

$B^+ o K^+ v \overline{v}$ at Belle II

Phys. Rev. Lett. 127 (2021) 181802

- First Belle II B-physics paper
- Binned simultaneous ML fit to on-resonance + off-resonance data is performed

Measured signal strength
$$\mu = 4.2^{+2.9}_{-2.8}(\mathrm{stat})^{+1.8}_{-1.6}(\mathrm{syst})$$

$$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = 1.9^{+1.6}_{-1.5} \times 10^{-5}$$

No significant signal is observed, so limit on BF is set with CL_s method

$$\mathcal{B}(B^+ \to K^+ v \bar{v}) < 4.1 \times 10^{-5} \text{ at 90 C.L}$$

Similar upper limit as Belle and BaBar

Summary

- The first experimental limit on the decay $B^0 \to K^{*0}\tau^+\tau^-$ at Belle $\mathcal{B}(B^0 \to K^{*0}\tau^+\tau^-) < 2.0 \times 10^{-3}$ at 90% C.L.
- ightharpoonup Search for $B^0_{(d)}
 ightharpoonup au^{\mp} \ell^{\pm}$ at Belle
 - ✓ Electron mode: the most stringent limit to date
- Belle II is stably accumulating data
- First Belle II B-physics paper has been published in channel with missing energy: $B^+ \to K^+ v \bar{v}$; a competitive limit has been set with only 63 fb⁻¹ data

Thank you for your attention