$\varepsilon^{\prime} / \varepsilon$,
 Standard Model and Beyond

Andrzej J. Buras
(TUM - Institute for Advanced Study)

CKM 2021 Melbourne

Overture

Homeoffice in Ottobrunn
 March $\mathbf{2 0 2 0 ~} \rightarrow$

Effective Hamiltonian and OPE

Examples: $O^{S M}=\left(\overline{\mathbf{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right)\left(\overline{\mathbf{d}} \gamma^{\mu}\left(1-\gamma_{5}\right) d\right)$

$$
\mathbf{O}^{\mathrm{NP}}=\left(\overline{\mathbf{s}}\left(1-\gamma_{5}\right) \mathbf{d}\right)\left(\overline{\mathrm{d}}\left(1-\gamma_{5}\right) \mathbf{d}\right)
$$

Renormalization scale

Impact of QCD at SD and LD Scales

(K-physics)
SD Fully under control: NLO + NNLO AJB: „Climbing NLO and NNLO Summits of Weak Decays" (1102.5650; last update 2014) Including BSM
(Munich, Rome + Gorbahn, Brod, (early 1990s) Haisch, Jäger, Nierste, Cèrda-Sevilla)
Lattice QCD (ETM, SWME, RBC-UKQCD, ...)
(Numerical sophisticated and demanding calculations lasting many years) (from first principles)

BSM operators only for $\mathbf{K}^{0}-\overline{\mathbf{K}}^{0}$ mixing

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{exp}}=(16.6 \pm 2.3) \cdot 10^{-4}
$$

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{sM}}=(14 \pm 5) \cdot 10^{-4}
$$

$$
\star\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{SM}}=(5 \pm 2) \cdot 10^{-4}
$$

Hep-arxiv: 2101.00020

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{SM}}=(21.7 \pm 8.4) \cdot 10^{-4}
$$

Chiral Perturbation Theory (Pich et al)

No Anomaly

Insight from Dual QCD
(AJB + Gérard) Anomaly

RBC - UKQCD
No Anomaly

CKM-Sonatina Nr. 1
 (Premiere - 25.11.2021)

$\varepsilon^{\prime} / \varepsilon$ Beyond SM

Edward Witten (1979, 1980)

At large N QCD becomes a theory of weakly interacting mesons
with coupling $\frac{1}{\mathrm{f}_{\pi}^{2}} \sim \frac{1}{\mathrm{~N}}$

In the strict Large \mathbf{N} limit QCD becomes a free theory of mesons.

AJB (1985) Gérard RückI

Dual QCD Approach for Weak Decays

Successful low energy approximation of QCD

W. Bardeen

AJB

Basic Structure of DQCD for $\mathbf{K} \rightarrow \pi \pi, \mathbf{K}^{0}-\overline{\mathbf{K}}^{0}$ mixing

$$
\left(\varepsilon^{\prime} / \varepsilon, \varepsilon, \Delta I=1 / 2 \text { Rule, } \Delta M_{K}\right)
$$

SM and BSM Operators
Reviews: 1401.1385, 1408.4820, 1809.02616, Cambridge Book

Λ_{NP}	
EW	SMEFT with SM and BSM Operators
1 GeV	QCD + QED with SM and BSM Operators (Quark-Gluon Evolution)

RG Evolution
$\alpha_{s}, \alpha_{2}, \alpha_{1}$ top Yukawa
$\alpha_{S}, \alpha_{\text {QED }}$
Non-Factorizable contributions

SM and BSM operators

Factorization Scale
($\mathrm{N} \rightarrow \infty$) for hadronic matrix elements

Crucial strong dynamics Responsible for $\Delta I=1 / 2$ Rule, $\varepsilon^{\prime} / \varepsilon, \varepsilon, \Delta M_{K}, K \rightarrow \pi \pi$ in general.

Very different philosophy from Chiral PTh in which meson evolution not included.

As the existence of Meson Evolution has been questioned over last 30 years by some Chiral Experts by some Lattice Experts

Let me demonstrate its existence by considering BSM operators in ($\mathbf{K}^{0}-\overline{\mathbf{K}}^{0}$ Mixing)
: The controversal issue of Final State interactions is absent here !!!
and four parameters to our disposal $B_{2}, B_{3}, B_{4}, B_{5}$

BSM $\Delta S=2$ Operators $K^{0}-\bar{K}^{0}$ Mixing

$$
P_{L, R}=\frac{1}{2}\left(1 \pm \gamma_{5}\right)
$$

BSM

$$
\left\langle\mathbf{o}_{\mathrm{i}}(\mu)\right\rangle \approx \frac{\mathbf{B}_{\mathrm{i}}(\mu)}{\mathbf{m}_{\mathrm{s}}^{2}(\mu)}
$$

$$
\begin{aligned}
& \mathbf{O}_{2}=\left(\overline{\mathbf{s}}^{\alpha} \mathrm{P}_{\mathrm{L}} \mathrm{~d}^{\alpha}\right)\left(\overline{\mathbf{s}}^{\beta} \mathrm{P}_{\mathrm{L}} \mathrm{~d}^{\beta}\right) \rightarrow \mathrm{B}_{2} \\
& \mathbf{0}_{3}=\left(\overline{\mathbf{s}}^{\alpha} \mathrm{P}_{\mathrm{L}} \mathrm{~d}^{\beta}\right)\left(\overline{\mathbf{s}}^{\beta} \mathrm{P}_{\mathrm{L}} \mathrm{~d}^{\alpha}\right) \rightarrow \mathrm{B}_{3} \\
& \mathbf{O}_{4}=\left(\overline{\mathbf{s}}^{\alpha} \mathrm{P}_{\mathrm{L}} \mathrm{~d}^{\alpha}\right)\left(\overline{\mathbf{s}}^{\beta} \mathrm{P}_{\mathrm{R}} \mathrm{~d}^{\beta}\right) \rightarrow \mathrm{B}_{4} \\
& \mathbf{O}_{5}=\left(\overline{\mathbf{s}}^{\alpha} \mathrm{P}_{\mathrm{L}} \mathrm{~d}^{\beta}\right)\left(\overline{\mathbf{s}}^{\beta} \mathrm{P}_{\mathrm{R}} \mathrm{~d}^{\alpha}\right) \rightarrow \mathrm{B}_{5}
\end{aligned}
$$

DQCD

 Explaining Values for $\mathbf{B}_{2}, B_{3}, B_{4}, B_{5}$ from Lattice QCD(AJB + Gérard, 1804.02401)
(ETM15, SWME, RBC-UKQCD)

DQCD

 Explaining Values for $\mathrm{B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}, \mathrm{~B}_{5}$ from Lattice QCD(AJB + Gérard, 1804.02401)
(ETM15, SWME, RBC-UKQCD)

DQCD

 Explaining Values for $\mathrm{B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}, \mathrm{~B}_{5}$ from Lattice QCD(AJB + Gérard, 1804.02401)
(ETM15, SWME, RBC-UKQCD)

DQCD

 Explaining Values for $\mathrm{B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}, \mathrm{~B}_{5}$ from Lattice QCD(AJB + Gérard, 1804.02401)
(ETM15, SWME, RBC-UKQCD)

μ	B_{2}	B_{3}	B_{4}	B_{5}	$\mathbf{K}^{0}-\overline{\mathbf{K}}^{0}$ mixing
3 GeV	0.49	0.77	0.90	0.65	AJB Lattice Average $(\pm 5 \%)$
$\begin{aligned} & \text { Quark } \\ & \text { Gluon } \\ & \text { Evolution } \\ & 1 \mathrm{GeV} \end{aligned}$	0.62	1.10	0.90	0.45	$\begin{aligned} & B_{2}=B_{3}=B_{4}=B_{5}=1 \\ & \text { Vacuum insertion } \end{aligned}$
[జ్జZజ్జ్జ్జ్జ్జ్ర	జ్జ్జZ	జ్జ్జ్జ	జ్జ్జ్జ్ర	జ్జ్జ్రె	gap : Vector mesons
$\begin{aligned} & \quad(0.70) \mathrm{GeV} \\ & \text { Meson } \\ & \text { Evolution } \end{aligned}$	0.79	0.96	0.83	0.30	Meson Evolution in the chiral limit
Factorization Scale ≈ 0	1.2	3.0	1.0	0.23	$-\mathbf{N} \rightarrow \infty$

Support for $\varepsilon</ \varepsilon$ Anomaly from DQCD

Main Messages from our Papers

The inclusion of meson evolution in the phenomenology of any non-leptonic transition like $\mathbf{K}^{0}-\overline{\mathbf{K}}^{0}$ mixing, $\mathrm{K} \rightarrow \pi \pi$ decays ($\Delta I=1 / 2$ Rule, $\varepsilon^{\prime} / \varepsilon$) is mandatory!

Meson Evolution is hidden in LQCD results but among analytic approaches only DQCD takes this important QCD dynamics into account.

The pattern of operator LD mixing found to agree with SD mixing both for SM and BSM operators.

2.
 $\varepsilon^{\prime} / \varepsilon$ in the Standard Model

Review: AJB, 2021.00020
The $\varepsilon^{\prime} / \varepsilon$ - Story: 1976-2021

Main Actors in $\varepsilon^{\prime} / \varepsilon$ in SM

\mathbf{Q}_{6} - QCD Penguin operator \mathbf{Q}_{8} - Electroweak Penguin operator

$\mathbf{Q}_{6}=\left(\overline{\mathbf{s}}_{\alpha} \mathbf{d}_{\beta}\right)_{\mathbf{V}-\mathrm{A}} \quad \sum_{\mathbf{q}}\left(\overline{\mathbf{q}}_{\beta} \mathbf{q}_{\alpha}\right)_{\mathbf{V}_{+}+\mathrm{A}}$
$\mathbf{Q}_{8}=\left(\overline{\mathbf{s}}_{\alpha} \mathbf{d}_{\beta}\right)_{\mathbf{v - A}} \quad \sum_{\mathbf{q}} \mathbf{e}_{\mathrm{q}}\left(\overline{\mathbf{q}}_{\beta} \mathbf{q}_{\alpha}\right)_{\mathbf{v}+\mathrm{A}}$

Importance of Q_{8} : (1989)
Flynn + Randall Buchalla, AJB, Harlander

32nd anniversary of the suppression of $\varepsilon^{\prime} / \varepsilon$ by Q_{8} at large m_{t}

QCD and Electroweak Penguin Matrix Elements

BBG strict Large \mathbf{N} limit

$$
B_{6}^{(1 / 2)}=B_{8}^{(3 / 2)}=1 \quad\left(\mu \approx 0\left(m_{\pi}\right)\right)
$$

$2015 \begin{array}{ll}\text { AJB + Gérard } \\ 1507.06326 & \begin{array}{l}\text { Including } 1 / N \\ \text { (meson evolution } \\ \left.\text { for } B_{6}, B_{8}\right)\end{array}\end{array} \begin{array}{ll}B_{6}^{(1 / 2)}<B_{8}^{(3 / 2)}<1\end{array}$ at $\mu \geq 1 \mathrm{GeV}$

$$
\begin{aligned}
& \left\langle Q_{6}(\mu)\right\rangle_{0}=-4\left[\frac{m_{K}^{2}}{m_{s}(\mu)}\right]^{2}\left(F_{K}-F_{\pi}\right) B_{6}^{(1 / 2)}(\mu) \\
& \left\langle Q_{8}(\mu)\right\rangle_{2}=\sqrt{2}\left[\frac{m_{K}^{2}}{m_{S}(\mu)}\right]^{2} F_{\pi} B_{8}^{(3 / 2)}(\mu)
\end{aligned}
$$

$B_{6}^{(1 / 2)}(\mu), B_{8}^{(3 / 2)}(\mu)$: very weak μ dependence for $\mu>1 G e V$ significantly stronger for $\mu<1 \mathrm{GeV}$ through meson evolution

Four dominant contributions to $\varepsilon^{\prime} / \varepsilon$ in the SM

AJB, Jamin, Lautenbacher (1993); AJB, Gorbahn, Jäger, Jamin (2015) Aebischer, Bobeth, AJB (2020)

$$
\begin{aligned}
& \left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{sm}}=\operatorname{Im}\left(\mathrm{V}_{\mathrm{td}} \mathrm{~V}_{\mathrm{ts}}^{*}\right) \text { [QCDP -EWP] } \\
& \text { QCDP }=\left(1-\hat{\Omega}_{\text {eff }}\right)\left[-2.9+15.4 \cdot B_{6}^{(1 / 2)}\right] \\
& (\mathrm{V}-\mathrm{A}) \otimes(\mathrm{V}-\mathrm{A}) \\
& \text { QCD Penguins } \\
& \text { (V-A) } \otimes(\mathrm{V}+\mathrm{A}) \\
& \text { QCD Penguins }
\end{aligned}
$$

$\hat{\Omega}_{\text {eff }}=0$ in present RBC-UKQCD
(isospin breaking)

(Nonet) ($\eta-\eta^{\prime}$ mixing)

DQCD

(Explicit Octet) $\hat{\Omega}_{\text {eff }}^{(8)}=(17 \pm 9) \cdot 10^{-2} \quad$ ChPT

Estimates of $\mathrm{B}_{6}^{(1 / 2)}$ and $\mathrm{B}_{8}^{(3 / 2)}$

$$
\text { At } \mu=1 \mathrm{GeV}
$$

$\mathrm{B}_{6}^{(1 / 2)} \leq 0.6$
$\mathrm{B}_{8}^{(3 / 2)}=0.80 \pm 0.10$
(DCQD-2015)
$B_{6}^{(1 / 2)}=1.49 \pm 0.25$
$B_{8}^{(3 / 2)}=0.85 \pm 0.05$
(RBC-UKQCD-2020)
$B_{6}^{(1 / 2)}=1.35 \pm 0.20$
$B_{8}^{(3 / 2)}=0.55 \pm 0.20$
(ChPT-2019)

Scale Dependence of B_{6} and B_{8}

AjB+ Gerard (1507.06326)

Additional Messages

1.

NNLO Corrections to electroweak penguins
AJB, Gambino, Haisch (1998)

$$
\Delta\left(\varepsilon^{\prime} / \varepsilon\right) \approx-1.3 \cdot 10^{-4}
$$

Remove large renormalization scheme dependence from NLO + scale dependence in $\mathbf{m}_{\mathbf{t}}(\mu)$

NNLO Corrections to QCD penguins
Maria Cerda-Sevilla, Martin Gorbahn, Sebastian Jäger, Ahmet Kokulu

$$
\begin{equation*}
\Delta\left(\varepsilon^{\prime} / \varepsilon\right) \approx-(1-2) \cdot 10^{-4} \tag{2021?}
\end{equation*}
$$

Meson Evolution suppressing $\varepsilon^{\prime} / \varepsilon$ more important than enhancement through FSI (claimed by Pallante + Pich) Problem in separating $Q_{2}-Q_{1}$ (current-current) from Q_{6} in CHPT. The same problem in Gisbert + Pich (1712.06147)

Good News on $\varepsilon^{\prime} / \varepsilon$

$\varepsilon^{\prime} / \varepsilon=$ QCD Penguins - Electroweak Penguin

$\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{\mathrm{SM}}^{\mathrm{EWP}}=-(7 \pm 1) \cdot 10^{-4} \quad$ (RBC - UKQCD and DQCD) $\quad \begin{aligned} & \text { Perfect } \\ & \text { Agreement! }\end{aligned}$

Chiral Pert Th: $\approx(-3.5 \pm 2.0) \cdot 10^{-4}$

Disagreements on QCD Penguin contribution. RBC-UKQCD $\approx 28 \cdot 10^{-4}$
ChPT $\approx 18 \cdot 10^{-4}$
DQCD $\approx 12 \cdot 10^{-4}$

Hopefully clarified in this decade!

Important Message for Non-Experts to take Home

RBC-UKQCD collaboration and ChPT Experts do not claim that there is no New Physics in $\varepsilon^{\prime} / \varepsilon$. But as of 2021 their methods are not sufficiently powerful to see an anomaly in $\varepsilon^{\prime} / \varepsilon$.

Dual QCD approach, even if approximate, can much faster see the underlying dynamics, even analytically. Both in $\varepsilon^{\prime} / \varepsilon$ and the $\Delta I=1 / 2$ rule !!

Main Dynamics responsible for $\varepsilon^{\prime} / \varepsilon$ Anomaly

	DQCD	RBC-UKQCD	ChPT
Large m $_{\mathbf{t}}$	\checkmark	\checkmark	\checkmark
Meson Evolution	\checkmark	\checkmark	-
Enhancement of EWP at NNLO	\checkmark	-	-
Suppression of QCDP at NNLO	\checkmark	-	-
Suppression of QCDP by IB (Octet)	\checkmark	-	\checkmark
Suppression of QCDP by $\eta-\eta$ 'mixing (Nonet)	\checkmark	-	$\mathbf{L}_{7} ?$

Important: The enhancement by FSI:

DQCD $\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{\text {SM }}=(5 \pm 2) \cdot 10^{-4}$ Included for $\mathrm{FSI} \leq$| Meson Evolution |
| :---: |
| suppression | AJB + Gérard: 1603.05686

Lattice QCD (from Stefan Meinel)

Numerical lattice gauge theory computations allow us to quantify nonperturbative strong-interaction effects from first principles and are crucial in the search for physics

The lattice approach does not introduce additional parameters and there is no fundamental limit on the precision.

(2021) Age Sum Rule

2

A. Pich

(2021) Age Sum Rule

N. Christ

C. Sachrajda

Good health for us 4 the full decade

(NLO)
 Status of $\varepsilon^{\prime} / \varepsilon$ in the SM before February 2020

RBC-UKQCD (1505.07863)

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{S M}=(1.4 \pm 6.9) \cdot 10^{-4} \quad \begin{aligned}
& \text { No isospin breaking } \\
& \text { correction (IB) }
\end{aligned}
$$

AJB, Gorbahn, Jäger Jamin

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{S M}=(1.9 \pm 4.5) \cdot 10^{-4}
$$

Lattice results + IB (1507.06345)

AJB + Gérard (1507.06326)

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{SM}}<(6.0 \pm 2.4) \cdot 10^{-4}
$$

Dual QCD bound

Kitahara, Nierste, Tremper (1607.06727)

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\text {SM }}=(1.1 \pm 5.1) \cdot 10^{-4} \quad \text { Lattice results }+\mathrm{IB}
$$

Gisbert, Pich (1712.06147)
(1912.04736)

Experiment
(NA48, KTeV)

$$
\begin{aligned}
& \left(\varepsilon^{\prime} / \varepsilon\right)_{\text {SM }}=(14 \pm 5) \cdot 10^{-4} \\
& \left(\varepsilon^{\prime} / \varepsilon\right)^{\exp }=(16.6 \pm 2.3) \cdot 10^{-4}
\end{aligned}
$$

NP Models and $\varepsilon^{\prime} / \varepsilon$ Anomaly (Only SM operators)

Littlest Higgs (T parity)	Blanke, AJB, Recksiegel (1507.06316)
Z-FCNC	AJB (1601.00005), Bobeth, AJB, Celis, Jung (1703.04753)
	Endo, Kitahara, Mishima, Yamamoto (1612.08839)
Z'-Models	AJB (1601.00005), AJB, Buttazzo, Knegjens (1507.08672)
331- Models	AJB, De Fazio (1512.02869, 1604.02344)
Vector-Like Quarks	Bobeth, AJB, Celis, Jung (1609.04783)
SUSY	Tanimoto, Yamamoto (1603.07960)
	Kitahara, Nierste, Tremper (1604.07400)
	Endo, Mishima, Ueda, Yamamoto (1608.01444)
	Crivellin, D‘Ambrosio, Kitahara, Nierste (1703.05786)
	Endo, Goto, Kitahara, Mishima, Ueda, Yamamoto
	(1712.04959)
Right-handed Currents	Cirigliano, Dekens, De Vries, Meraghetti (1703.04751)
SU(2) $\otimes S U(2)_{R} \otimes U(1)_{B-L}$	Haba, Umeeda, Yamada (1802.09903, 1806.03424)
Leptoquark Models	Bobeth, AJB (1712.01295)

Dominated by Q_{8}

AJB (1601.00005), Bobeth, AJB, Celis, Jung (1703.04753) Endo, Kitahara, Mishima, Yamamoto (1612.08839)

AJB (1601.00005), AJB, Buttazzo, Knegjens (1507.08672)
AJB, De Fazio (1512.02869, 1604.02344)
Bobeth, AJB, Celis, Jung (1609.04783)
Tanimoto, Yamamoto (1603.07960)
Kitahara, Nierste, Tremper (1604.07400)
Endo, Mishima, Ueda, Yamamoto (1608.01444)
Crivellin, D‘Ambrosio, Kitahara, Nierste (1703.05786)
Endo, Goto, Kitahara, Mishima, Ueda, Yamamoto (1712.04959)

Cirigliano, Dekens, De Vries, Meraghetti (1703.04751)
Haba, Umeeda, Yamada (1802.09903, 1806.03424)
Bobeth, AJB (1712.01295)

NP Models and $\varepsilon^{\prime} / \varepsilon$ Anomaly continued

2HDM
SU(8)
Diquarks

Chen, Nomura (1804.06017, 1805.07522)
Matsuzaki, Nishiwaki, Yamamoto (1806.02312)
Chen, Nomura (1808.04097) (1811.02315)

Most papers address correlations with $\mathrm{K} \rightarrow \pi v \bar{v}$ and EDMS.
Correlation with tensions in $B \rightarrow \pi K$ (LHCb) through $\mathbf{U}(2)^{3}$ flavour symmetry

Crivellin, Gross, Pokorski, Vernazza (1909.02101)

2018 Results in DQCD

: BSM hadronic Matrix elements
1.

> Matrix elements of chromomagnetic penguins $\begin{array}{ll}\text { AJB + Gérard } \quad 1803.08052 \quad & \text { (First on-shell } K \rightarrow \pi \pi \\ \text { calculation to date) }\end{array}$

Confirmation of $\mathrm{K} \rightarrow \pi$ matrix element
$B_{\text {Смо }} \approx 1 / 3$ by ETM collaboration 1712.09824

Insight into BSM B_{i} parameters ($\mathrm{K}^{0}-\overline{\mathbf{K}}^{0}$ Mixing) obtained by Lattice QCD 1804.02401 (AJB + Gérard)

Much smaller
than early
estimates in
chiral quark
model

Meson
Evolution
(see 1. Movement)
$\mathrm{K} \rightarrow \pi \pi$ matrix elements of all BSM 4-quark operators

(1807.01709)

Jason Aebischer

Christoph Bobeth

AJB

Jean-Marc Gérard

Jason Aebischer

Christoph Bobeth

AJB

David Straub

All Dimension 6 BSM Four-Quark Operators (linearly independent)

ABG (1807.01709) ABBS (1808.00466)

QCD x QED
invariant

SM : 7
BSM : $33=7^{\prime}+13+13^{\prime}$

Matrix Elements
only calculated
in DQCD
SMEFT invariant under SM gauge Group

Master Formula for $\varepsilon^{\prime} / \varepsilon$ Beyond SM

$$
\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{\mathrm{SM}}+\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{\mathrm{NP}}
$$

Valid in ANY extension of SM

$$
\begin{aligned}
& \left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{N P}=\sum_{i} P_{i}\left(\mu_{\mathrm{ew}}\right) \operatorname{lm}\left[C_{i}\left(\mu_{\mathrm{ew}}\right)-\mathrm{C}_{\mathrm{i}}^{\prime}\left(\mu_{\mathrm{ew}}\right)\right] \\
& i=1, \ldots 40 \quad \text { 4-quark operators + } 1 \text { dipole operator } \quad\left(P_{\mathrm{L}} \leftrightarrow P_{\mathrm{R}}\right) \\
& \begin{array}{l}
\text { Model } \\
\text { independent: } \quad P_{\mathrm{i}}\left(\mu_{\mathrm{ew}}\right) \text { - Include hadronic elements + renormalization group } \\
\text { effects from } \mu \approx 0(1 \mathrm{GeV}) \text { to } \mu_{\mathrm{ew}} \approx 0\left(\mathrm{~m}_{\mathrm{t}}\right)
\end{array}
\end{aligned}
$$

Model

| All
 listed |
| :--- | :--- | :--- |
| 1807.02520 |

Islands of $\mathbf{K} \rightarrow \pi \pi$ Matrix Elements

ABBS (1808.00466) ABBGS (1808.02520) ABG (1807.01709)

Conquered in 2018

Useful paper: de Blas, Criado, Perez-Victoria, Santiago (1711.10391)

Most important for $\varepsilon^{\prime} / \varepsilon$ Anomaly

BSM anatomy of $\varepsilon^{\prime} / \varepsilon$: Aebischer, Bobeth, AJB, Straub (1808.00466) SMEFT analysis

Leptoquarks cannot explain this anomaly because of bounds from rare Kaon decays
(Bobeth, AJB, 1712.01295)

Basically only U_{1} model survives

General non-leptonic $\Delta F=1$ WET at NLO in QCD
 (2107.10262)

J. Aebischer, C. Bobeth, AJB, J. Kumar, M. Misiak

$$
\overrightarrow{\mathbf{C}}_{\text {BMU }}\left(\mu_{\text {had }}\right)=\underbrace{\hat{\mathbf{B}}_{\text {BMU }}\left(\mu_{\text {had }}, \mu_{\text {ew }}\right) \hat{\mathbf{M}}_{\text {JMS }}}_{\text {WET Operators }}\left(\mu_{\mathrm{ew}}\right) \overrightarrow{\mathbf{C}}_{\text {JMS }}\left(\mu_{\text {ew }}\right)
$$

BMU basis: useful for QCD
RG evolution
(AJB, Misiak, Urban (2000))

JMS basis: useful for matching to SMEFT
(Jenkins, Manohar, Stoffer) (Dekens, Stoffer)
$\hat{\mathbf{M}}_{\text {JMS }}=$ Matching of JMS on BMU
Careful treatment of Evanescent Operator required

Tables of
$\left[\hat{\mathbf{U}}_{\text {вми }}\left(\mu_{\text {had }}, \mu_{\text {ew }}\right) \hat{\mathbf{M}}_{\text {JMs }}\right]_{\text {ab }}$
$a=$ BMU $\quad b=$ JMS

J. Kumar

M. Misiak

BSM Master Formula for $\varepsilon^{\prime} / \varepsilon$ in the WET Basis at NLO in QCD
 (2107.12391)

J. Aebischer, C. Bobeth, AJB, J. Kumar

$$
\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{\mathrm{BSM}}=\sum_{\mathrm{b}} \mathrm{P}_{\mathrm{b}}\left(\mu_{\mathrm{ew}}\right) \operatorname{lm}\left[\mathrm{C}_{\mathrm{b}}\left(\mu_{\mathrm{ew}}\right)-\mathrm{C}_{\mathrm{b}}^{\prime}\left(\mu_{\mathrm{ew}}\right)\right] \cdot(1 \mathrm{TeV})^{2}
$$

$\mathbf{P}_{\mathrm{b}}\left(\mu_{\text {ew }}\right)$ calculated in NLO QCD in JMS basis (important step towards NLO QCD analysis of $\varepsilon^{\prime} / \varepsilon$ in SMEFT)

SM Hadronic matrix element: LQCD BSM Hadronic matrix element: DQCD
*) Generalization of 2018 LO master formula [1807.01709, 1807.02520]

Links between $\left(\varepsilon^{\prime} / \varepsilon\right)_{\text {BSM }}$ and $(K \rightarrow \pi v \bar{v})_{\text {BSM }}$

AJB: 1601.00005; 1805.11096 Aebischer, Bobeth, AJB, Straub: 1808.00466

See Backup

Main Homework for Coming Years

RBC-UKQCD :
 a) Isospin breaking and QED Corrections (including $\eta-\eta^{\prime}$ mixing)
 b) Inclusion of charm

ChPT

: a) Matching to short distance $\left(\mathrm{L}_{5}\right)$
b) Better inclusion of $\eta-\eta^{\prime}$ mixing (L_{7})

DQCD
Final state interactions

Inclusion of NNLO QCD to QCD Penguins

BSM hadronic matrix elements from LQCD
known only from DQCD

Contributions from other LQCD Groups Ishizuka et al 1809.03893; Hernandez et al. 2003.10293

$\Delta I=1 / 2$ Rule

$$
\mathrm{R}_{\mathrm{exp}}=\frac{\mathrm{A}\left(\mathrm{~K} \rightarrow(\pi \pi)_{\mathrm{l}=0}\right)}{\mathrm{A}\left(\mathrm{~K} \rightarrow(\pi \pi)_{\mathrm{l}=2}\right)}=22.4
$$

Puzzle since

$$
1954 \text { (Gell-Mann + Pais) }
$$

$$
R_{t h}=\sqrt{2}
$$

(without QCD)
\(\left.\begin{array}{l}1986

2014\end{array}\right] \quad R=16 \pm 2 \quad\)| Dual |
| :--- |
| QCD |

Current-Current, not QCDP

$$
R=19.19 \pm 4.8
$$

RBC-UKQCD

Lattice Collaboration

QCD dynamics dominate this rule but New Physics could still contribute

AJB
F. de Fazio
J. Girrbach-Noe
(1404.3824)

Note: Relative to no QCD case must enhance A_{0} by 7.5 suppress A_{2} by 2.1

Hep-arxiv: 2101.00020

Flavour Physics (2020 -
)

Crevasses

New Physics Summits

SMEFT Energy gap
Allan Buras
SM

Flavour Physics (2020 -)

(KAON 2031)

Zeptouniverse

Crevasses
New Physics Summits

SMEFT
Energy gap

Allan Buras

SM

(KAON 2031)

SMEFT Energy gap
Allan Buras
SM

Backup

Meson Evolution

Loops with a physical cutt-off $\wedge: 1 / \mathrm{N}$ non-factorizable contributions

(a)

(c)

(b)
weak

- strong

(d)

Very different philosophy from Chiral PTh
No dimensional regularisation !!!

QCD and Electroweak Penguin Matrix Elements

$$
B_{6}^{1 / 2}=B_{8}^{3 / 2}=1 \quad\left(\mu \approx 0\left(m_{\pi}\right)\right)
$$

2015 AJB + Gérard \begin{tabular}{ll}
1507.06326

Including 1/N

(meson evolution
\end{tabular}$\quad \mathrm{B}_{6}^{1 / 2}<\mathrm{B}_{8}^{3 / 2}<1 \quad$ at $\mu \geq 1 \mathrm{GeV}$

RBC-UKQCD

$$
\begin{aligned}
& B_{6}^{(1 / 2)}=1-0.66 \ln \left(1+\frac{\Lambda^{2}}{\tilde{m}_{6}^{2}}\right) \Rightarrow B_{6}^{(1 / 2)}<0.54 \\
& B_{8}^{(3 / 2)}=1-0.17 \ln \left(1+\frac{\Lambda^{2}}{\tilde{m}_{8}^{2}}\right) \Rightarrow B_{8}^{(3 / 2)} \approx 0.8 \pm 0.1 \quad B_{8}^{(3 / 2)}=0.57 \pm 0.19 \\
&
\end{aligned}
$$

$$
\tilde{\mathbf{m}}_{6,8}<\Lambda
$$

$\Lambda=$ physical

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{S M}<(6.0 \pm 2.4) \cdot 10^{-4}
$$ cut-off

B_{6} and B_{8} in the Perturbative Regime (1993!)

AJB, Jamin, Lautenbacher, (9303284)

B_{6} and B_{8} decrease with increasing μ !
Note $B_{6}=B_{8}=1$ at $\mu=m_{c}$ wrong!!

Dual QCD Approach

Bardeen, AJB, Gérard

		High Energy Scale
Wilson Coefficients	Standard Renormalization Group Evolution within Quark + Gluon Phase	Short-Distances
		0 (1 GeV)
Hadronic Matrix Elements	Evolution within Meson Phase of QCD (Meson Evolution)	Long-Distance Scales
Large \mathbf{N} Limit	T.	Factorization Scale
	The only analytic approach allowing matching of short distance and long-distance contributions	
Meson evolution (hidden in lattice QCD) is crucial strong dynamics responsible for $\Delta l=1 / 2$ rule, $\varepsilon^{\prime} / \varepsilon, \varepsilon, K \rightarrow \pi \pi$ in general		

First QCDP NNLO Result for $\left(\varepsilon^{\prime} / \varepsilon\right)_{\text {SM }}$

Links between $\left(\varepsilon^{\prime} / \varepsilon\right)_{\text {BSM }}$ and $(\mathrm{K} \rightarrow \pi v \overline{\mathrm{v}})_{\text {BSM }}$

With few exceptions these links are not direct unless one makes specific assumptions about flavour diagonal couplings:

Examples

$\mathrm{K} \rightarrow \pi v \bar{v}$

$\varepsilon^{\prime} / \varepsilon$

In loop induced decays concrete models are required, but often in view of many parameters no strict relation.
(MSSM, L-R symmetric models)

Induced Z-mediated FCNCs

LH FCNCs

Enhancement of $\varepsilon^{\prime} / \varepsilon$ implies
suppression of $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$
$\binom{\mathrm{K}_{\mathrm{L}} \rightarrow \mu \bar{\mu}}{$ bound }
$\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right) \leq 2 \operatorname{Br}\left(\mathrm{~K}^{+} \rightarrow \pi^{+} v \bar{v}\right)_{\mathrm{SM}}$

RH
 FCNCs

LH+RH FCNCs

Suppression of $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$
$\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right) \leq 1.5 \operatorname{Br}\left(\mathrm{~K}^{+} \rightarrow \pi^{+} v \bar{v}\right)_{\mathrm{SM}}$
$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ and $\mathrm{K}^{+} \rightarrow \pi^{+} \nu \bar{v}$
can be both enhanced if necessary (no definite prediction)

Literature:
AJB (1601.00005), Bobeth, AJB, Celis, Jung (1703.04753) Endo, Kitahara, Mishima, Yamamoto (1612.08839)

$\varepsilon^{\prime} / \varepsilon$ and rare K Processes in Leptoquark Models

Assuming that the upper bound on $\left(\varepsilon^{\prime} / \varepsilon\right)_{\text {SM }}$ from Dual QCD is correct: Largest anomaly!

But in contrast to $\mathbf{R}_{\mathrm{D}}, \mathbf{R}_{\mathrm{D}^{*}}$ (LQs contribute there at tree level) in $\varepsilon^{\prime} / \varepsilon$ leptoquarks contribute at one-loop (RG running and box contributions)

Large $\operatorname{Im}(Y)$ couplings required
Problems with rare decays
$\mathrm{K} \rightarrow \pi \nu \bar{v}, \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{I}^{+} \mathrm{I}^{-}, \mathrm{K}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$(tree-level)
but also $\Delta \mathrm{M}_{\mathrm{K}}, \varepsilon_{\mathrm{K}} \quad$ Basically only U_{1} model survives
but only if LH and RH couplings present

Leptoquarks facing $\varepsilon^{\prime} / \varepsilon$ and $\mathrm{K} \rightarrow \pi v \bar{v}$

Exp. Bound
Grossman-Nir Bound
U_{1}

$$
\begin{aligned}
& \left(\varepsilon^{\prime} / \varepsilon\right)^{N P}=\kappa_{\varepsilon^{\prime}} \cdot 10^{-3} \\
& 0.5 \leq \kappa_{\varepsilon^{\prime}} \leq 1.5
\end{aligned}
$$

U_{1} Model meets $\varepsilon^{\prime} / \varepsilon$ and rare K Decays

Generation of Q_{8} through RG group!

No tree-level contributions to $\mathrm{K} \rightarrow \pi v \bar{v}$, generated through RG but still consistent with bounds even for $\kappa_{\varepsilon} \approx 1.0$

If only left-handed or right-handed couplings present ruled out through

$$
\binom{\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{K}_{\mathrm{L}} \rightarrow \pi \mu^{+} \mu^{+},}{\mathbf{K}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}} \quad \begin{aligned}
& \text { (the only hope: } \\
& \text { couplings } \\
& \text { between } \tau \text { and } \mathrm{d}, \mathrm{~s})
\end{aligned}
$$

Box contributions with left- and right-handed couplings could help but UV completion needed to do the calculation. Would also generate LR contributions to $\Delta M_{K}, \varepsilon_{\mathrm{K}}$: very dangerous!

Main Messages on LQs in $\varepsilon^{\prime} / \varepsilon$ and rare K Decays

If improved lattice calculations will confirm the $\varepsilon^{\prime} / \varepsilon$ anomaly at the level $\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{NP}} \geq 5 \cdot 10^{-4}$ LQs are likely not responsible for it.

But if $\varepsilon^{\prime} / \varepsilon$ anomaly disappears large NP effects from LQs in rare K decays still possible.
(Need non-zero couplings to first generation!!)
(Need imaginary couplings!)
(Need both left-handed and right-handed couplings!)
In contrast to most explanations of B-anomalies

In both directions governed by QED and EW effects

Large enhancement of $\varepsilon^{\prime} / \varepsilon$ does not imply large effects in $\mathrm{K} \rightarrow \pi \nu \bar{v}$
2.

Large enhancements of $K \rightarrow \pi v \bar{v}$ do not imply large enhancement of $\varepsilon^{\prime} / \varepsilon$
(Problem for leptoquark models)

$\varepsilon^{\prime} / \varepsilon$ vs ΔM_{K}

$\left(\underset{\text { (2019) }}{\mathrm{ABB}}\left(\frac{\varepsilon^{1}}{\varepsilon}\right)_{\mathrm{SM}}=(5.5 \pm 2.4) \cdot 10^{-4} \quad\left(\Delta \mathrm{M}_{\mathrm{K}}\right)_{\mathrm{SM}}=(7.7 \pm 2.1) \cdot 10^{-15} \mathrm{GeV}\right.$

NP has to enhance $\varepsilon^{\prime} / \varepsilon$
AJB 1601.00005

NP has to suppress $\Delta \mathrm{M}_{\mathrm{K}}$ $\left(\Delta \mathbf{M}_{\mathrm{K}}\right)_{\exp }=3.5 \cdot 10^{-15} \mathrm{GeV}$

To keep ε_{K} under control in the presence of large Img:

$$
[\operatorname{lmg} \gg \operatorname{Reg}] \Rightarrow\left(\Delta M_{\mathrm{K}}\right)^{\mathrm{NP}}<0
$$

Operators with Largest P_{i}
 ABBGS (1807.02520)

(Most efficient in explaining $\varepsilon^{\prime} / \varepsilon$ anomaly)

$$
\begin{aligned}
& \mathbf{O}_{\mathrm{VLR}}^{\mathrm{u}}=\left(\overline{\mathbf{s}}^{\mathrm{i}} \boldsymbol{\gamma}_{\mu} \mathbf{P}_{\mathrm{L}} \mathrm{~d}^{\mathrm{i}}\right)\left(\overline{\mathbf{u}}^{\mathrm{j}} \boldsymbol{\gamma}^{\mu} \mathbf{P}_{\mathrm{R}} \mathbf{u}^{\mathrm{j}}\right) \\
& \tilde{\mathbf{O}}_{\mathrm{VLR}}^{u}=\left(\overline{\mathbf{s}}^{\mathrm{i}} \boldsymbol{\gamma}_{\mu} \mathbf{P}_{\mathrm{L}} \mathbf{d}^{\mathrm{j}}\right)\left(\overline{\mathbf{u}}^{\mathrm{j}} \boldsymbol{\gamma}^{\mu} \mathbf{P}_{\mathrm{R}} \mathbf{u}^{\mathrm{i}}\right) \\
& \mathbf{O}_{\mathrm{VLR}}^{\mathrm{d}}=\left(\overline{\mathbf{s}}^{\mathrm{i}} \gamma_{\mu} \mathrm{P}_{\mathrm{L}} \mathrm{~d}^{\mathrm{i}}\right)\left(\overline{\mathbf{d}}^{\mathrm{j}} \boldsymbol{\gamma}^{\mu} \mathrm{P}_{\mathrm{R}} \mathrm{~d}^{\mathrm{j}}\right) \\
& \left.\tilde{\mathbf{O}}_{\text {VLR }}^{d}=\left(\overline{\mathbf{s}}^{\mathrm{i}} \gamma_{\mu} \mathbf{P}_{\mathrm{L}} \mathbf{d}^{\mathrm{j}}\right)\left(\overline{\mathbf{d}}^{\mathrm{j}} \boldsymbol{\gamma}^{\mu} \mathbf{P}_{\mathrm{R}} \mathbf{d}^{\mathrm{i}}\right)\right] \\
& \mathbf{O}_{\mathrm{TLL}}^{u}=\left(\overline{\mathbf{s}}^{\mathrm{i}} \sigma_{\mu v} \mathbf{P}_{\mathrm{L}} \mathbf{d}^{\mathrm{i}}\right)\left(\overline{\mathbf{u}}^{\mathrm{j}} \boldsymbol{\sigma}^{\mu \nu} \mathbf{P}_{\mathrm{L}} \mathbf{u}^{\mathrm{j}}\right) \\
& \tilde{\mathbf{O}}_{\mathrm{TLL}}^{u}=\left(\overline{\mathbf{s}}^{\mathrm{i}} \sigma_{\mu \nu} \mathbf{P}_{\mathrm{L}} \mathrm{~d}^{\mathrm{j}}\right)\left(\overline{\mathbf{u}}^{\mathrm{j}} \sigma^{\mu \nu} \mathbf{P}_{\mathrm{L}} \mathbf{u}^{\mathrm{i}}\right) \\
& O_{T L L}^{d}=\left(\overline{\mathbf{s}}^{i} \sigma_{\mu \nu} P_{L} d^{i}\right)\left(\bar{d}^{j} \sigma^{\mu \nu} P_{L} d^{j}\right) \\
& \mathbf{O}_{\mathrm{SLR}}^{u}=\left(\overline{\mathbf{s}}^{i} \mathrm{P}_{\mathrm{L}} \mathrm{~d}^{\mathrm{i}}\right)\left(\overline{\mathbf{u}}^{\mathrm{j}} \mathbf{P}_{\mathrm{R}} \mathrm{u}^{\mathrm{j}}\right) \\
& \left(+P_{L} \leftrightarrow P_{R}\right) \\
& \text { Present already in SM } \\
& \text { (i, } \mathrm{j}=1,2,3 \text {, colour) (generate } \mathrm{Q}_{6}, \mathrm{Q}_{8} \text {) } \\
& \text { New Operators } \\
& \text { (related to scalar-scalar } \\
& \text { operators by Fierz identities) } \\
& \text { Forbidden in } \\
& \text { SMEFT }=\mathrm{SU}(3)_{\mathrm{C}} \otimes \mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{U}(1)_{\mathrm{Y}} \\
& \text { Allowed by } \mathrm{SU}(3)_{\mathrm{c}} \otimes \mathrm{U}(1)_{\mathrm{a}}
\end{aligned}
$$

Basic Formula for $\varepsilon^{\prime} \varepsilon$

$$
\begin{aligned}
& \varepsilon^{\prime} / \varepsilon=-\frac{\omega}{\sqrt{2}|\varepsilon|} \frac{\operatorname{lm} A_{0}}{\operatorname{Re} A_{0}}\left[1-\frac{1}{\omega} \frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{0}}\right] \quad \omega=\frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{0}} \approx \frac{1}{22} \\
& =-\frac{\omega}{\sqrt{2}|\varepsilon|}\left[\frac{\operatorname{lm} A_{0}}{\operatorname{Re} A_{0}}\left(1-\hat{\Omega}_{\text {eff }}\right)-\frac{\left(\operatorname{Im} A_{2}\right)^{\text {EWP }}}{\operatorname{Re} A_{2}}\right] \quad(\Delta I=1 / 2 \text { rule }) \\
& \hat{\Omega}_{\text {eff }}=\frac{1}{\omega} \frac{\left(\operatorname{lm} A_{2}\right)^{1 B}}{\operatorname{Re}_{0}}+\text { subleading QED corrections } \\
& \operatorname{ImA}_{0}=\left(\operatorname{lm} A_{0}\right)^{\text {aCDP }}+\text { subleading EWP contributions }
\end{aligned}
$$

QCDP

Suppressed through IB ~ 1/ ω
Enhanced through FSI
Suppressed through Meson Evolution

EWP

Enhanced through 1/ ω Suppressed through FSI Enhanced through large $\mathbf{m}_{\mathbf{t}}$

Importance of EW Penguins at large m_{t}
Flynn, Randall; Buchalla, AJB, Harlander (1989)
NLO Corrections to QCD and EW Penguins
AJB, Jamin, Lautenbacher, Weisz (1993)
Ciuchini, Franco, Martinelli, Reina (1993)
Dominant NNLO QCD Corrections to EW Penguins
AJB, Gambino, Haisch (1999)
Isospin Breaking corrections
Cirigliano et al (2019) AJB + Gérard (1987)
RBC-UKQCD hadronic matrix elements (2019)
Supported by DQCD $(2015,2016)$ AJB + Gérard

Lattice QCD	Dual QCD	Chiral Perturbation Theory
New Physics	New Physics	New Physics
Short Distance RG Evolution	Short Distance RG Evolution	Short Distance RG Evolution
Numerical sophisticated and demanding calculations lasting many years. (from first principles)	Meson Evolution: The only analytic	Problems with matching with short distance, L_{i} (No meson evolution)
	matching with short distance	Based on global symmetries of QCD

Meson evolution (hidden in lattice QCD) is crucial strong dynamics responsible for $\Delta I=1 / 2$ rule, $\varepsilon \varepsilon^{\prime} / \varepsilon, \varepsilon, K \rightarrow \pi \pi$ in general

