

Precise Radiative Corrections to Vud

Misha Gorshteyn

Johannes Gutenberg-Universität Mainz

Collaborators: *Chien-Yeah Seng Michael Ramsey-Musolf Hiren Patel Xu Feng Lu-Chang Jin Peng-Xian Ma Ulf Meißner Daniel Galviz*

CKM Unitarity Workshop 2021 (Virtual) - November 22-26, 2021

History of Radiative Corrections to B Decay

1950's: V - A Fermi theory;

$$\mathcal{L} = -\frac{G_{\mu}}{\sqrt{2}} [\bar{\psi}_{\nu_{\mu}} \gamma^{\mu} (1 - \gamma_5) \psi_{\mu}] [\bar{\psi}_e \gamma_{\mu} (1 - \gamma_5) \psi_{\nu_e}] + \text{h.c.}$$

Calculating radiative corrections to muon decay: important evidence for V-A theory RC to muon decay - UV finite for V and A interactions but UV divergent for S, PS

$$\frac{1}{\tau_{\mu}} = \frac{G_{\mu}^2 m_{\mu}^5}{192\pi^3} F(x) [1 + \delta_{\mu}]$$

Tree-level phase space: $F(x) = 1 - 8x - 12x^2 \ln x + 8x^3 - x^4$ $x = m_e^2/m_{\mu}^2$

RC (2-loop):
$$\delta_{\mu} = \frac{\alpha}{2\pi} \left(\frac{25}{4} - \pi^2\right) \left[1 + \frac{2\alpha}{3\pi} \ln\left(\frac{m_{\mu}}{m_e}\right)\right] + 6.700 \left(\frac{\alpha}{\pi}\right)^2 + \dots = -4.19818 \times 10^{-3}$$

Precise measurement of muon lifetime: $\tau_{\mu} = 2196980.3(2.2)ps$ Precise determination of Fermi constant: $G_F = G_{\mu} = 1.1663788(7) \times 10^{-5} GeV^{-2}$

History of Radiative Corrections to B Decay

$$\mathcal{L}_{\beta-\text{decay}} = -\frac{G_V}{\sqrt{2}} [\bar{\psi}_p \gamma^\mu (1-\gamma_5)\psi_n] [\bar{\psi}_e \gamma_\mu (1-\gamma_5)\psi_{\nu_e}] + \text{h.c.}$$

However, RC to neutron decay - UV divergent even in V-A theory Uncorrected spectrum for Fermi transition: $P^0 d^3 p = \frac{8G_V^2}{(2\pi)^4} (E_m - E)^2 d^3 p$ RC to spectrum: $\Delta P d^3 p = \frac{\alpha}{2\pi} P^0 d^3 p \left\{ 6 \ln \left(\frac{\Lambda}{m_p} \right) + g(E, E_m) + \frac{9}{4} \right\}$ UV cut-off

Sirlin's function $g(E, E_m)$: QED beyond Coulomb distortion

Current algebra: UV div. part $\frac{\alpha}{2\pi}P^0d^3p \ 3[1+2\bar{Q}]\ln(\Lambda/M)$

 \bar{Q} : average charge of fields involved: $1 + 2\bar{Q}_{\mu,\nu_{\mu}} = 0$ but $1 + 2\bar{Q}_{n,p} = 2$

Neutron and nuclear beta decay rates: $G_V < G_\mu$ Kaon and hyperon decays? ($\Delta S = 1$) Is weak interaction universal? Strong interaction effects?

Quark Mixing & CKM Unitarity

for the theory - SU(2) $_{L} \times U(1)_{Y}$, massive W, Z bosons, EW mixing, ...

Charged current interaction - β -decay (μ , π^{\pm} , n)

Weak interaction of lepton and quarks is universal But its strength is distributed among quark families

Cabbibo-Kabayashi-Maskawa: mass vs. flavor eigenstates

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

CKM unitarity - measure of completeness of the SM: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

Landscape Change in Top-Row CKM Unitarity

PDG 2018:

Improvement (factor 2) in universal RC

PDG 2020:

Seng, MG, Patel, Ramsey-Musolf, 1807.10197; Seng, MG, Ramsey-Musolf, 1812.03352 MG, 1812.04229

Scrutiny of nuclear uncertainties $\mathcal{F}t = 3072.1(7) \rightarrow 3072.0(2.0)$ If taken at face value: $V_{ud}^{0^+} = 0.9737(1)_{\text{RC}}(3)_{\mathcal{F}t}$

 g_A from neutron decay asymmetry improved by factor 4 $V_{ud} = 0.9763(5)_{\tau_n} (15)_{g_A} (2)_{\text{RC}} \longrightarrow V_{ud} = 0.9733(3)_{\tau_n} (3)_{g_A} (1)_{\text{RC}}$

RC to beta decay: overall setup

Outer (depend on e-energy): retain only IR divergent pieces

E/m_e not small, need to account for exactly. Coulomb distortion: resummation of $(Z\alpha)^n \longrightarrow$ Dirac equation in the Coulomb field IR finite piece: can set m_e=0 —> if energy-dependent ~ $(\alpha/2\pi) \times (E/\Lambda_{had})$

Inner RC
$$\Delta_R^V$$
 — energy-independent

W,Z-exchange: UV-sensitive, pQCD; model-independent

When γ involved: sensitive to long range physics; model-dependent!

 $\underset{\mathcal{W}}{\overset{V}{=}} \mathcal{R}_{m_{N}}^{p} \neq 2 \underset{\gamma W}{\overset{A \times V}{=}} + \text{ model independent}$

V x V correlator protected by
$$\mathbb{C}\sqrt{\mathbb{C}}^{Rec} - h \mathcal{O}\pi h \mathcal{A} \mathcal{O}F \mathcal{O}^2 uncertainty$$

Axial vector not conserved —> A x V correlator from γW box sensitive to hadron structure
Superalloweds $|V_{ud}|^2 = \frac{\int_{2984.43s}^{d^4q} e^{iqx} p T \{J_{em}^{\mu}(x)(J_{W}^{\nu}(0))_{A}\} n}{\mathcal{F}t(1+\Delta_{R}^{V})}$ Neutron $|V_{ud}|^2 = \frac{5024.7 \text{ s}}{\tau_n(1+3g_{A}^2)(1+\Delta_{R})}$

Universal RC from dispersion relations

Model-dependent part or RC: γW -box

Generalized Compton tensor time-ordered product — complicated!

$$dxe^{iqx}\langle H_f(p) | T\{J_{em}^{\mu}(x)J_W^{\nu,\pm}(0)\} | H_i(p) \rangle$$

$$\begin{array}{c}
\nu \\
q \\
W^+ \\
H_i
\end{array} \xrightarrow{f} q \\
H_f$$

Commutator (Im part) - only on-shell hadronic states — related to data

 $\int dx e^{iqx} \langle H_f(p) | [J^{\mu}_{em}(x), J^{\nu,\pm}_W(0)] | H_i(p) \rangle$

Physics of model dependence: virtual photon polarizes the nucleus; Long-range part of the box sensitive to hadronic polarizabilities; Polarizabilities are related to the excitation spectrum via a dispersion relation (sum rule)

Interference γW structure function

Box ~ 1st Nachtmann moment of $F_3^{\gamma W(0)}$

Symmetry: only isoscalar photons contribute

$$\mathrm{Im}T^{\mu\nu}_{\gamma W} = \dots + \frac{i\varepsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2(pq)}F^{\gamma W}_{3}(x,Q^{2})$$

$$\Box_{\gamma W}^{VA} = \frac{3\alpha}{2\pi} \int_0^\infty \frac{dQ^2}{Q^2} \frac{M_W^2}{M_W^2 + Q^2} M_3^{\gamma W(0)}(Q^2)$$

Nachtmann moments:

$$M_3(n,Q^2) = \frac{n+1}{n+2} \int_0^1 \frac{dx\xi^n}{x^2} \frac{2x(n+1) - n\xi}{n+1} F_3(x,Q^2), \qquad \xi = \frac{2x}{1 + \sqrt{1 + 4M^2 x^2/Q^2}}$$

Input into dispersion integral

Dispersion in energy: $W^2 = M^2 + 2M\nu - Q^2$ scanning hadronic intermediate states

Dispersion in Q²: scanning dominant physics pictures

Boundaries between regions - approximate

Input in DR related (directly or indirectly) to experimentally accessible data

Input into dispersion integral - $\nu/\bar{\nu}$ data

Isospin symmetry: vector-isoscalar current related to vector-isovector current

Marciano, Sirlin 2006: $\Delta_R^V = 0.02361(38) \longrightarrow |V_{ud}| = 0.97420(10)_{Ft}(18)_{RC}$ DR (Seng et al. 2018): $\Delta_R^V = 0.02467(22) \longrightarrow |V_{ud}| = 0.97370(10)_{Ft}(10)_{RC}$

Main limitation: low quality of neutrino data (old bubble-chamber experiments) Better neutrino data from DUNE (Snowmass 2022 LOI in preparation) Next breakthrough: first principle calculation on the lattice

First lattice QCD calculation of γW -box

Neutron γW -box - complicated Address (very rare! BR ~ 10⁻⁸) pion decay $\pi^+ \to \pi^0 + e^+ + \nu_e$ Partial decay width: $\Gamma_{\pi\ell3} = \frac{G_F^2 |V_{ud}|^2 m_\pi^5 |f_+^{\pi}(0)|^2}{64\pi^3} (1+\delta)I_{\pi} = 0.3988(23) \,\mathrm{s}^{-1}$

Form factor: well under control RC: estimate in χ PT: $\delta = 0.0334(10)_{LEC}(3)_{HO}$

Cirigliano et al., 2003

All values of Q contribute to the integral Use perturbative QCD 4-loop result for $Q^2 \ge 2 \,\mathrm{GeV^2}$

$$M_{\pi}(Q^2) = \frac{1}{12} \left[1 - \tilde{C}_1 \left(\frac{\alpha_S}{\pi} \right) - \tilde{C}_2 \left(\frac{\alpha_S}{\pi} \right)^2 - \tilde{C}_3 \left(\frac{\alpha_S}{\pi} \right)^3 - \tilde{C}_4 \left(\frac{\alpha_S}{\pi} \right)^4 - \dots \right]$$

For low $Q^2 \leq 2 \text{ GeV}^2$: direct lattice calculation of the generalized Compton tensor Feng, MG, Jin, Ma, Seng 2003.09798

First lattice QCD calculation of γW -box

Main executors: Xu Feng (Peking U.), Lu-Chang Jin (UConn/RIKEN BNL) Supercomputers: Blue Gene/Q Mira computer (Argonne, USA), Tianhe 3 prototype (Tianjin, China)

$$\mathcal{H}_{\mu\nu}^{VA}(t,\vec{x}) \equiv \langle H_f(P) | T \left[J_{\mu}^{em}(t,\vec{x}) J_{\nu}^{W,A}(0) \right] | H_i(P) \rangle$$

$$M_{3\pi}^{\gamma W(0)}(Q^2) = -\frac{1}{6\sqrt{2}} \frac{Q}{m_{\pi}} \int d^4 x \omega(Q, x) \varepsilon_{\mu\nu\alpha0} x_{\alpha} \mathscr{H}_{\mu\nu}^{VA}(x)$$

Lattice setup:

5 LQCD gauge ensembles at physical pion mass Generated by RBC and UKQCD collaborations w. 2+1 flavor domain wall fermion

Ensemble	m_{π} [MeV]	L	Т	a^{-1} [GeV]	N _{conf}	N_r	$\Delta t/a$
24D	141.2(4)	24	64	1.015	46	1024	8
32D	141.4(3)	32	64	1.015	32	2048	8
32D-fine	143.0(3)	32	64	1.378	71	1024	10
48I	135.5(4)	48	96	1.730	28	1024	12
64I	135.3(2)	64	128	2.359	62	1024	18

Quark contraction diagrams

Blue: DSDR Red : Iwasaki

First lattice QCD calculation of γW -box

Estimate of major systematic effects:

- Lattice discretization effect: Estimated using the discrepancy between DSDR and Iwasaki
- pQCD calculation: Estimated from the difference between 3-loop and 4-loop results
- Higher-twist effects at large Q²: Estimated from lattice calculation of type (A) diagrams

Final result:
$$\Box_{\gamma W}^{VA}|_{\pi} = 2.830(11)_{\text{stat}}(26)_{\text{syst}} \times 10^{-3}$$

Significant reduction of the uncertainty! δ : $0.0334(10)_{\text{LEC}}(3)_{\text{HO}} \rightarrow 0.0332(1)_{\gamma W}(3)_{\text{HO}}$

Cleanest way to access V_{ud} theoretically: $|V_{ud}| = 0.9740(28)_{exp}(1)_{th}$ Next-gen experiments: aim at 1 o.o.m. exp. uncertainty improvement

Implications for the free nucleon γW -box

Main uncertainty of the DR calculation of the free neutron γW -box: Poorly constrained parameters of the Regge contribution which dominates the Nachtmann moment at $Q^2 \sim 1 - 2 \, {\rm GeV}^2$

Use the Regge universality and a body of $\pi\pi$, π N, NN scattering data.

Independent confirmation of the empirical DR result AND uncertainty

 $\Delta_R^V = 0.02467(22)_{\rm DR} \rightarrow 0.02477(24)_{\rm LQCD+DR}$

DR result confirmed by other groups

Czarnecki, Marciano, Sirlin, Phys.Rev. D 100 (2019) 7, 073008 Shiells, Blunden, Melnitchouk, Phys.Rev.D 104 (2021) 3, 033003 Hayen, Phys.Rev.D 103 (2021) 11, 113001

Summary of universal RC

0+-0+ nuclear decays

$$|V_{ud}|^{2} = \frac{2984.43s}{\mathscr{F}t(1+\Delta_{R}^{V})} \qquad |V_{ud}^{0^{+}-0^{+}}| = 0.9737 (1-3)_{exp+nucl} (1)_{RCn}$$
Free neutron decay

$$|V_{ud}|^{2} = \frac{5024.7 \, s}{\tau_{n}(1+3g_{A}^{2})(1+\Delta_{R})} \qquad |V_{ud}^{free \, n}| = 0.9733 (3)_{\tau_{n}} (3)_{g_{A}} (1)_{RCn}$$
Pion decay $\pi^{+} \to \pi^{0}e^{+}\nu_{e} \qquad |V_{ud}|^{2} = \frac{0.9799}{(1+\delta)} \frac{\Gamma_{\pi\ell3}}{0.3988(23) \, s^{-1}} \qquad |V_{ud}^{\pi\ell3}| = 0.9739 (27)_{exp} (1)_{RC\pi}$

RC uncertainty halved, model dependence (of the uncertainty!) thoroughly tested

Reason for improvement:

a new method (dispersion relations) allowed to combine independent inputs

Experimental neutrino data + lattice QCD + ChPT + Regge phenomenology

Fully up to date for a 0.01% determination of V_{ud}

With improved experimental precision for (τ_n, g_A) neutron decay becomes competitive

Status of $\delta_{\rm NS}$

Splitting the yW-box into Universal and Nuclear Parts

RC for nuclear decay $ft(1 + RC + ISB) = \mathcal{F}t(1 + \Delta_R^V) = ft(1 + \delta_R')(1 - \delta_C + \delta_{NS})(1 + \Delta_R^V)$

RC on a free neutron

$$\Delta_{R}^{V} \propto F_{3}^{\text{free n}} \propto \int dx e^{iqx} \sum_{X} \langle p | J_{em}^{\mu,(0)}(x) | X \rangle \langle X | J_{W}^{\nu,+}(0) | n \rangle$$
RC on a nucleus

$$\Delta_{R}^{V} + \delta_{NS} \propto F_{3}^{\text{Nucl.}} \propto \int dx e^{iqx} \sum_{X'} \langle A' | J_{em}^{\mu,(0)}(x) | X' \rangle \langle X' | J_{W}^{\nu,+}(0) | A \rangle$$
NS correction reflects this extraction of the free box

$$\Box_{\gamma W}^{VA, \text{ Nucl.}} = \Box_{\gamma W}^{VA, \text{ free n}} + \left[\Box_{\gamma W}^{VA, \text{ Nucl.}} - \Box_{\gamma W}^{VA, \text{ free n}} \right]$$
Nuclear modification in the lower part of the spectrum
Input in the DR for the universal RC
Input in the DR for the universal RC

$$\int_{Q}^{\text{Eastic}} \frac{1}{\sigma_{W}} \frac{d^{\sigma}_{x}}{d\Omega_{x}d\omega} + \frac{q^{\sigma}_{x} \text{ region}}{\sigma_{W}} \frac{1}{\sigma_{W}} \frac{d^{\sigma}_{x}}{d\Omega_{x}d\omega} + \frac{q^{\sigma}_{x} \text{ region}}{\sigma_{W}} \frac{1}{\sigma_{W}} \frac{d^{\sigma}_{x}}{\partial \Omega_{x}d\omega} + \frac{q^{\sigma}_{x} \text{ region}}{\sigma_{W}} \frac{1}{\sigma_{W}} \frac{d^{\sigma}_{x}}{\partial \Omega_{x}} + \frac{1}{\sigma_{W}} \frac{1}{\sigma_{W}} \frac{d^{$$

Splitting the γ W-box into Universal and Nuclear Parts

Case (A): non-interacting (=on-shell) neutron propagating between interaction vertices Case (B): all two-nucleon contributions (QE 2p2h and nuclear excitations)

Insert on-shell intermediate states:

$$T^{A}_{\mu\nu} \rightarrow \sum_{k} \langle f | J^{W}_{\mu}(k) [S^{N}_{F} \otimes G^{A''}_{nuc}] J^{EM}_{\nu}(k) | i \rangle$$

The elastic nucleon box is replaced by a single N QE knockout

Universal vs. Nuclear Corrections

Towner 1994 and ever since:

$$\Box_{\gamma W}^{\text{quenched Born}} - \Box_{\gamma W}^{\text{Born}} = [q_S^{(0)}q_A - 1] \Box_{\gamma W}^{\text{Born}}$$

Idea: calculate Gamow-Teller and magnetic nuclear transitions in the shell model; Insert the single nucleon spin operators —> predict the strength of nuclear transitions "Quenching of spin operators in nuclei": shell model overestimates those strengths! Each vertex is suppressed by 10-15%

Numerically: on average between the 14 superallowed decays

$$\delta_{NS}^{quenched Born} = [q_S^{(0)}q_A - 1]2 \prod_{\gamma W}^{\text{free n, Born}} \approx -0.058(14)\%$$

But from dispersion relation perspective it corresponds to a contribution of an excited nuclear state, not to the modified box on a free nucleon! The correct estimate should base on quasielastic knockout with an on-shell N + spectator in the intermediate state

Note that continuum is outside shell model Hilbert space!

Splitting the yW-box into Universal and Nuclear Parts

Parent	Unquenched		Ç	Quenched $C_{\rm N}$	IS		$(q-1) \times$	$\delta_{ m NS}$	S(%)
nucleus	$C_{\rm NS}$	OS	SS	OV	SV	total	$C_{\rm Born}({\rm free})$	Quenched	Adopted
$T_{z} = -1:$									
¹⁰ C	-1.669	0.002	-0.283	-0.002	-1.065	-1.348	-0.188	-0.357	-0.360(35)
¹⁴ O	-1.360	-0.008	-0.341	0.082	-0.782	-1.049	-0.221	-0.295	-0.250(50)
¹⁸ Ne	-1.531	-0.011	-0.249	-0.119	-0.812	-1.191	-0.210	-0.325	-0.290(35)
²² Mg	-1.046	-0.009	-0.222	-0.067	-0.497	-0.796	-0.226	-0.237	-0.240(20)
²⁶ Si	-0.986	-0.007	-0.224	-0.086	-0.424	-0.741	-0.242	-0.228	-0.230(20)
³⁰ S	-0.800	0.002	-0.287	0.020	-0.300	-0.566	-0.257	-0.191	-0.190(15)
³⁴ Ar	-0.770	0.014	-0.322	0.061	-0.272	-0.519	-0.273	-0.184	-0.185(15)
³⁸ Ca	-0.693	0.041	-0.358	0.091	-0.214	-0.440	-0.288	-0.169	-0.180(15)
⁴² Ti	-1.011	-0.016	-0.181	-0.225	-0.354	-0.776	-0.256	-0.240	-0.240(20)
$T_{z} = 0:$									
26m Al	0.352	-0.007	-0.224	0.086	0.424	0.279	-0.242	0.009	0.009(20)
³⁴ Cl	-0.135	0.015	-0.333	-0.064	0.280	-0.101	-0.273	-0.087	-0.085(15)
^{38m} K	-0.276	0.042	-0.363	-0.093	0.216	-0.198	-0.288	-0.113	-0.100(15)
⁴² Sc	0.472	-0.016	-0.182	0.228	0.358	0.389	-0.256	0.031	0.030(20)
⁴⁶ V	0.101	-0.004	-0.197	0.099	0.198	0.096	-0.263	-0.039	-0.040(7)
⁵⁰ Mn	0.054	-0.009	-0.184	0.104	0.152	0.063	-0.270	-0.048	-0.042(7)
⁵⁴ Co	0.161	-0.013	-0.180	0.133	0.203	0.144	-0.277	-0.031	-0.029(7)
⁶² Ga	0.172	0.005	-0.289	-0.058	0.445	0.103	-0.289	-0.043	-0.040(20)
⁶⁶ As	0.124	0.006	-0.291	-0.070	0.421	0.066	-0.295	-0.053	-0.050(20)
⁷⁰ Br	0.077	0.009	-0.295	-0.083	0.401	0.032	-0.301	-0.063	-0.060(20)
⁷⁴ Rb	0.155	0.009	-0.261	0.006	0.353	0.106	-0.306	-0.046	-0.065(20)

 $\delta_{\rm NS} = \frac{\alpha}{\pi} \left[C_{\rm NS} + C_B^{\rm quenched} \right] \approx 0.22 \% \left[C_{\rm NS} + C_B^{\rm quenched} \right]$

Hardy, Towner 2002 review

Nuclear Structure Modification

C-Y Seng, MG, M J Ramsey-Musolf, arXiv: 1812.03352 MG, arXiv: 1812.04229

 δ_{NS} from DR with energy dependence averaged over the spectrum

$$\delta_{NS} = \frac{2\alpha}{\pi NM} \int_0^{1 \,\text{GeV}^2} dQ^2 \int_{\nu_{thr}}^{\nu_{\pi}} \frac{d\nu}{\nu} \left[\frac{\nu + 2q}{(\nu + q)^2} \left(F_3^{(0)\,Nucl.} - F_3^{(0),B} \right) + \frac{2\langle E \rangle}{3} \frac{\nu + 3q}{(\nu + q)^3} F_3^{(-)\,Nucl.} \right]$$

 $\Lambda_{\text{nuc}} \sim Q \sim 10 \text{ MeV}$: nuclear structure leaks from inner into outer RC (" γW -box inside-out")

Compare the effect on the average Ft value:

HT value 2018:	Old estimate:	$\delta \mathcal{F}t = -(1.8 \pm 0.4)s + (0 \pm 0)s$
$\mathcal{F}t = 3072.1(7)s$	New estimate:	$\delta \mathcal{F}t = -(3.5 \pm 1.0)s + (1.6 \pm 0.5)s$

Two 2*σ* corrections that cancel each other; The cancellation is delicate: the two terms are highly correlated Larger E-dep. term will correspond to a smaller negative E-indep. term and vv.

```
Conservative uncertainty estimate: 100% \mathscr{F}
```

 $\mathcal{F}t = (3072 \pm 2)s$

Emphasize: until a complete dispersive δ_{NS} calculation exists this is only a hint!

Status of δ_C

Isospin symmetry breaking in superallowed β -decay

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

Fermi matrix element:

$$M_F = \sum_{lpha,eta} \langle f | a^{\dagger}_{lpha} a_{eta} | i
angle \langle lpha | au_+ | eta
angle$$

 a_{α}^{\dagger} creates a neutron in the state α a_{β} annihilates a proton in the state β

Single-particle m. e.

$$\langle \alpha | \tau_{+} | \beta \rangle = \delta_{\alpha,\beta} \int_{0}^{\infty} R_{\alpha}^{n}(r) R_{\beta}^{p}(r) r^{2} dr \equiv \delta_{\alpha,\beta} r_{\alpha}$$

 $R^n_{\alpha}, R^p_{\beta}$ - neutron and proton radial WF

Insert a complete set of states (in practice - dominant shells)

$$M_F = \sum_{\alpha,\pi} \langle f | a_{\alpha}^{\dagger} | \pi \rangle \langle \pi | a_{\alpha} | i \rangle r_{\alpha}^{\pi}$$

Exact isospin symmetry: $\langle \pi | a_{\alpha} | i \rangle = \langle f | a_{\alpha}^{\dagger} | \pi \rangle^*$ and $r_{\alpha}^{\pi} = 1$

$$M_0 = \sum_{\alpha,\pi} |\langle f | a_{\alpha}^{\dagger} | \pi \rangle|^2 \quad \underline{\mathsf{ISB}} \quad |M_F|^2 = |M_0|^2 (1 - \delta_C)$$
$$\delta_C = \delta_{C1} + \delta_{C2}$$

TABLE X. Corrections δ'_R , δ_{NS} , and δ_C that are applied to experimental ft values to obtain $\mathcal{F}t$ values.

Parent	δ'_R	$\delta_{\rm NS}$	δ_{C1}	δ_{C2}	δ_C
lucicus	(70)	(<i>n</i>)	(70)	(70)	(70)
$T_{z} = -1$					
^{0}C	1.679	-0.345(35)	0.010(10)	0.165(15)	0.175(18)
⁴ O	1.543	-0.245(50)	0.055(20)	0.275(15)	0.330(25)
⁸ Ne	1.506	-0.290(35)	0.155(30)	0.405(25)	0.560(39)
²² Mg	1.466	-0.225(20)	0.010(10)	0.370(20)	0.380(22)
²⁶ Si	1.439	-0.215(20)	0.030(10)	0.405(25)	0.435(27)
⁶⁰ S	1.423	-0.185(15)	0.155(20)	0.700(20)	0.855(28)
³⁴ Ar	1.412	-0.180(15)	0.030(10)	0.665(55)	0.695(56)
⁸⁸ Ca	1.414	-0.175(15)	0.020(10)	0.745(70)	0.765(71)
² Ti	1.427	-0.235(20)	0.105(20)	0.835(75)	0.940(78)
$T_z = 0$					
^{26m} Al	1.478	0.005(20)	0.030(10)	0.280(15)	0.310(18)
³⁴ Cl	1.443	-0.085(15)	0.100(10)	0.550(45)	0.650(46)
^{8m}K	1.440	-0.100(15)	0.105(20)	0.565(50)	0.670(54)
² Sc	1.453	0.035(20)	0.020(10)	0.645(55)	0.665(56)
⁶ V	1.445	-0.035(10)	0.075(30)	0.545(55)	0.620(63)
⁵⁰ Mn	1.444	-0.040(10)	0.035(20)	0.610(50)	0.645(54)
⁵⁴ Co	1.443	-0.035(10)	0.050(30)	0.720(60)	0.770(67)
⁵² Ga	1.459	-0.045(20)	0.275(55)	1.20(20)	1.48(21)
⁶⁶ As	1.468	-0.060(20)	0.195(45)	1.35(40)	1.55(40)
^{′0} Br	1.486	-0.085(25)	0.445(40)	1.25(25)	1.70(25)
^{/4} Rb	1.499	-0.075(30)	0.115(60)	1.50(26)	1.62(27)

HT: calculate $\delta_{C1,C2}$ in shell model with *phenomenological* Woods-Saxon potential locally adjusted:

- Masses of the isobaric multiplet T=1, 0⁺ (e.g. ${}^{34}Ar {}^{34}Cl {}^{34}S$)
- Neutron and proton separation energies
- Known proton (charge) radii of stable isotopes

ISB in superallowed β -decay and test of CVC

Conserved vector current hypothesis —> Ft constant

However: to achieve this precision the model was adjusted locally in each iso-multiplet

- Is this formalism the right tool to assess consistency amongst all the measurements?
- Red squares: even within one iso-multiplet $({}^{34}Ar {}^{34}Cl {}^{34}S, {}^{38}Ca {}^{38m}K {}^{38}Ar)$ discrepancies between central values may be larger than the total uncertainty
- Shell model does not cover all the model space (e.g. continuum)
- HT method criticized for using incorrect isospin formalism (G. Miller, A. Schwenk)
- Ab initio methods do not warrant such high precision

ISB in superallowed β -decay: nuclear model comparison

25

TABLE XI. Recent δ_C calculations (in percent units) based on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF (shell-model, Hartree-Fock), RPA (random phase approximation), IVMR (isovector monopole resonance), and DFT (density functional theory). Also given is the χ^2/ν , χ^2 per degree of freedom, from the confidence test discussed in the text. J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

				RPA			
	SM-WS	SM-HF	PKO1	DD-ME2	PC-F1	IVMR ^a	DFT
$T_{z} = -1$							
${}^{10}C$	0.175	0.225	0.082	0.150	0.109	0.147	0.650
¹⁴ O	0.330	0.310	0.114	0.197	0.150		0.303
²² Mg	0.380	0.260					0.301
³⁴ Ar	0.695	0.540	0.268	0.376	0.379		
³⁸ Ca	0.765	0.620	0.313	0.441	0.347		
$T_{z} = 0$							
26m Al	0.310	0.440	0.139	0.198	0.159		0.370
³⁴ Cl	0.650	0.695	0.234	0.307	0.316		
^{38m} K	0.670	0.745	0.278	0.371	0.294	0.434	
⁴² Sc	0.665	0.640	0.333	0.448	0.345		0.770
⁴⁶ V	0.620	0.600					0.580
⁵⁰ Mn	0.645	0.610					0.550
⁵⁴ Co	0.770	0.685	0.319	0.393	0.339		0.638
⁶² Ga	1.475	1.205					0.882
⁷⁴ Rb	1.615	1.405	1.088	1.258	0.668		1.770
χ^2/ν	1.4	6.4	4.9	3.7	6.1		4.3 ^b

HT: χ^2 as criterium to prefer SM-WS; V_{ud} and limits on BSM strongly depend on nuclear model

Nuclear community (Hagen, Forssen, Stroberg & friends): 0.968 _____ exploratory ISB corrections with modern computational methods (not easy)

Better theory does not guarantee smaller uncertainties!

L. Xayavong, N.A. Smirnova, Phys.Rev. C 97 (2018), 024324

IVMR (Iso-Vector Monopole Resonance) method: developed to relate δ_C to IV-sensitive observable

V_{ud} and top-row CKM unitarity summary

3-sigma CKM unitarity deficit established

Significant shift in Vud due to RC

New dispersion relation method: Combined Exp + LQCD + ChPT +... Unified nuclear and universal RC Further work necessary

Improvement in understanding theory issues does not guarantee smaller uncertainties

Beta decays remain a BSM testing ground-0.005 even in the high-lumi LHC era

Gonzalez Alonso, Naviliat-Cuncic, Severijns 2019