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experimental information is consistent with pure V , A, V ′ and A′ interactions. Possible deviations, which in the
four-component neutrino framework involve quadratic expressions in gi, g′i(i = S, T, P ) are expected to be very small
and can therefore be treated at the tree level. The products of these small deviations with (α/2π)f(x) and (α/2π)g(x)
are of second order in the small quantities and, therefore, are not considered significant.
At present, very precise measurements of ρ, δ, ξ and η are carried out in the TWIST experiment at TRIUMPH

(Bayes et al., 2011), and a very accurate determination of τµ has been made by the Mulan collaboration at PSI
(Webber et al., 2011).

C. The V -A Theory

The discovery of parity non-conservation led to another very important development: by greatly increasing the
number of observables available for experimental and theoretical study, it opened the way for the determination of
the basic phenomenological interaction. This led Sudarshan and Marshak (1957, 1958) and Feynman and Gell-Mann
(1958) to propose a universal V -A Fermi Interaction for charged current processes, such as muon decay, β decay and
the semileptonic decays of hyperons.
In the case of muon decay, this theory implies the validity of Eqs.(9,10) and furthermore states that

gA = −gV . (22)

Using the Fierz transformations (Fierz, 1937), Eqs.(9,10,22) lead to the following coupling constants g̃i, g̃′i in the
charge-exchange order:

g̃S = g̃′S = g̃T = g̃′T = g̃P = g̃′P = 0, (23)

g̃V = −g̃A = gV = −g̃′V = g̃′A . (24)

Defining Gµ ≡
√
2gV , Eqs.(9,10,22,23,24) lead to

L = −
Gµ√
2
[ψ̄νµγ

µ(1− γ5)ψµ][ψ̄eγµ(1 − γ5)ψνe ] + h.c. , (25)

= −
Gµ√
2
[ψ̄eγ

µ(1 − γ5)ψµ][ψ̄νµγµ(1 − γ5)ψνe ] + h.c. . (26)

Thus, the interaction Lagrangian for muon decay in the V -A theory has a very simple and elegant form that in-
volves a single coupling constant and is preserved in passing from the charge-retention to the charge-exchange order.
Eqs.(9,10,22) lead also to the sharp predictions:

ρ = δ = 3/4 , (27)

η = 0 , (28)

ξ = 1 , (29)

as can be readily verified by inserting Eq.(22) into Eqs.(12,13).
With the neglect of strong interaction effects, in the original version of the V -A theory other four-fermion interaction

processes were described by Lagrangian densities of the same form as Eq.(25). For example, for n → p+ e− + ν̄e, the
basic process for β decay, the Lagrangian density was postulated to be of the form.

Lβ−decay = −
GV√
2
[ψ̄pγ

µ(1− γ5)ψn][ψ̄eγµ(1 − γ5)ψνe ] + h.c. , (30)

where GV is the vector coupling constant in β-decay.

D. Radiative Corrections to Muon Decay in the V -A Theory and the Fermi Constant

Taking into account Eqs.(22,27,28,29), we see that in the V -A theory, the energy-angle distributions of e−(e+) in
muon decay are simply obtained by setting |gA| = gV = Gµ/

√
2, η = 0, ξ = 1 in the two-component theory expression

(Eq.(14)). In particular, the O(α) corrections are still governed by the functions f(x) and g(x). Furthermore, using
the transformation ψe → ψ′

e = γ5ψe, me → −me discussed in Section II.A, it can be shown that in the V -A theory
there are no contributions to the differential decay rate (Eq.(14)) that involve odd powers of me (Roos and Sirlin,
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1971). This implies that corrections of O((α/π)me/mµ) are absent and that the leading mass-dependent corrections
to the differential decay rate are of O((α/π)m2

e/m
2
µ ln(m

2
µ/m

2
e)). On the other hand, in the calculation of integrated

observables such as the total decay rate, the integration over the electron or positron momentum does give rise to
corrections of O(α) proportional to (me/mµ)3, as well as even powers of me/mµ (van Ritbergen and Stuart, 1999a).

Radiative corrections of O(α2) to the electron spectrum were evaluated by Anastasiou, Melnikov, and Petriello
(2007); Arbuzov (2003); Arbuzov, Czarnecki, and Gaponenko (2002); Arbuzov and Melnikov (2002).
Recently, the TWIST collaboration (Bayes et al., 2011) reported very accurate measurements of the parameters

ρ, δ and Pπ
µ ξ in the four-component neutrino framework of the general Fermi theory (Pπ

µ is the initial degree of
polarization of the muon from π decay):

ρ = 0.74977± 0.00012 (stat.)± 0.00023 (syst.) ; (31)

δ = 0.75049± 0.00021 (stat.)± 0.00027 (syst.) ; (32)

Pπ
µ ξ = 1.00084± 0.00029 (stat.)+0.00165

−0.00063 (syst.) . (33)

These results are in very good agreement with the predictions of the V -A theory, Eqs.(27, 29) and Pπ
µ = 1, at a high

level of precision. As mentioned before, the radiative corrections (RC) play a crucial role in the analysis. The authors
also use these results to derive interesting bounds for the combinations |(gR/gL)ζ| and (gL/gR)m2 in the generalized
left-right symmetry model (gL and gR are the gauge couplings of WL and WR, ζ the mixing angle when WL and WR

are expressed in terms of the mass eigenstates W1 and W2, and m2 the mass of W2).
The radiative corrections to the muon lifetime τµ have been the subject of great interest and detailed studies. In

fact, the argument given at the end of Section II.A can be generalized: it has been shown that to leading order in
Gµ, but all orders in α, the radiative corrections to muon decay in the V -A theory are finite after mass and charge
renormalization (Berman and Sirlin, 1962). The detailed calculations reach now the two-loop level and lead to:

1

τµ
=

G2
µm

5
µ

192π3
F (x)[1 + δµ], (34)

where x = m2
e/m

2
µ, F (x) = 1 − 8x − 12x2 lnx + 8x3 − x4 is a tree-level phase-space factor and δµ is the radiative

correction.
Neglecting very small terms proportional to powers of me/mµ, we have

δµ =
α

2π

(

25

4
− π2

)[

1 +
2α

3π
ln

(

mµ

me

)]

+ 6.700
(α

π

)2
+ · · · . (35)

The O(α) term has been known since the end of the 1950’s (Berman, 1958; Kinoshita and Sirlin, 1959a), the logarith-
mic term of O(α2) was derived in 1971 (Roos and Sirlin, 1971), and the last term in 1999 (van Ritbergen and Stuart,
1999a,b; Steinhauser and Seidensticker, 1999), about 40 years after the one-loop correction! The two terms of O(α2)
nearly cancel each other. Including very small one and two-loop contributions proportional to powers of me/mµ

(Pak and Czarnecki, 2008; van Ritbergen and Stuart, 1999a), we have

δµ = −4.19948× 10−3 + 1.06× 10−6 , (36)

where the first and second terms stand for the one and two-loop contributions, respectively. This reveals that when the
corrections are expressed in terms of α, as in Eq.(35), the O(α2) effects are very small, and the originalO(α) calculation
turns out to be very accurate. Alternatively, δµ is frequently written in the form (van Ritbergen and Stuart, 1999a,b;
Steinhauser and Seidensticker, 1999)

δµ =
α(mµ)

2π

(

25

4
− π2

)

+ 6.700

(

α(mµ)

π

)2

+ C(x) + · · · , (37)

where α(mµ) = 1/135.9026283 . . . is the running α(µ) parameter at the mµ scale. In this second form the logarithmic
term of O(α2) has been absorbed in the O(α(mµ)) contribution, and the O(α2(mµ)) effects are ≈ 3.6 × 10−5,
considerably larger than in Eq.(36). The correction δµ has been also studied using optimization methods that select
the optimal scale in α(µ), permit to analyze the scheme dependence of the calculations and estimate the unknown
terms of O(α3(mµ)) (Ferroglia, Ossola, and Sirlin, 1999). This analysis leads to an estimated error of ≈ 2.6 × 10−7

in δµ due to the truncation of the perturbative series.
C(x) in Eq.(37) denotes very small RC proportional to powers of x. Specifically,

C(x) =
α(mµ)

π

[

x(−12 lnx− 9− 4π2 + 16π2x1/2) +O(x2)
]

−
(

α(mµ)

π

)2

0.0784 + · · · . (38)
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where α(mµ) = 1/135.9026283 . . . is the running α(µ) parameter at the mµ scale. In this second form the logarithmic
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(

α(mµ)

π

)2

0.0784 + · · · . (38)
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α(mµ)

π

)2

0.0784 + · · · . (38)

RC (2-loop):
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The terms of O(α(mµ)xl/π) (l = 1, 3/2) were derived by van Ritbergen and Stuart (1999a). Their expression differs
from that in Eq.(38) because of the factorization of F (x) in our Eq.(36), which was not employed by those authors.
For clarity, we point out that to the stated level of accuracy, our result for 1/τµ based on Eqs.(34, 37, 38) through the
terms of O(α(mµ)xl/π) , is equivalent to that obtained in their 1999 paper. The contribution of O((α(mµ)/π)2) was
derived years later (Pak and Czarnecki, 2008) and amounts to −4.3× 10−7. An interesting feature is that its leading
contribution is linear in me/mµ: − (α(mµ)/π)

2 (5/4)π2x1/2 = −3.27× 10−7.
Because of the high precision of the τµ measurement (Webber et al., 2011) and the theoretical clarity of Eqs.(34,35,

37,38), GF , the universal Fermi constant of the weak interactions, is identified with Gµ. Inserting the experimental
value τµ = 2196980.3(2.2) ps, Eqs.(34, 37, 38) lead to δµ = −4.19818× 10−3 and

GF = Gµ = 1.1663788(7)× 10−5 GeV−2 , (39)

an important 0.6 ppm determination (Webber et al., 2011).
We note that the evaluation of δµ in the α and α(mµ) schemes, namely δµ = −4.19842 × 10−3 (Eq.(36)) and

δµ = −4.19818 × 10−3, respectively, differ by −2.4 × 10−7. This difference is consistent with the estimate of the
third order coefficient in the α(mµ) expansion on the basis of the optimization methods, namely (c3)est. ≈ −20
(Ferroglia, Ossola, and Sirlin, 1999). The effect of this difference on the determination of GF (Eq.(39)), is also small
in comparison with the current experimental error.

We also note that, in some theoretical discussions of 1/τµ, a factor (1 + 3m2
µ/M

2
W ) that represents the tree level

correction from the W -boson propagator, is applied in the r. h. s. of Eq.(34). Since this factor does not arise in
the Fermi theory framework, it is not included in our Eq.(34). It has been pointed out by van Ritbergen and Stuart
(1999a) that, in ST calculations, it can be more naturally included in the electroweak correction ∆r (cf. Eq.(54)).
More generally, it can be included in the expressions of the form GF (1 − EWC) where EWC denotes a generic
electroweak correction such as ∆r̂,∆r̂W , and ∆reff (cf. Eqs.(57, 58, 66)). On the other hand, it is useful to observe
that this factor would amount to an addition of only ≈ 5× 10−7 to such electroweak correction, which is negligible at
the current level of accuracy.

E. The Universality of the Weak Interactions and the Conserved Vector Current Hypothesis

The principle of universality of the weak interactions is a concept of enduring significance. In fact, it has motivated,
at least in part, several important developments in particle physics.
The origin of the idea can be traced to 1947–49, when several authors (Klein, 1948; Lee, Rosenbluth, and Yang, 1949;

Pontecorvo, 1947; Puppi, 1948, 1949; Tiomno and Wheeler, 1949) noted that the basic processes µ− → e− + νµ + ν̄e,
n → p+ e− + ν̄e, and µ− + p → n+ νµ are characterized approximately by the same coupling constant, of magnitude
≈ 10−5 GeV−2. On this basis they proposed a universal weak interaction among the doublets (νe, e), (νµ, µ) and (p, n).
In 1951, Enrico Fermi stated that this similarity is probably not accidental and has a deep meaning not understood
at the time (Fermi, 1951). He also suggested a possible analogy with the universality of electric-charge.
In their 1958 paper, Feynman and Gell-Mann (1958) compared Gµ with GV , the vector coupling in β-decay ex-

tracted from 14O decay, a superallowed (0+ → 0+) Fermi transition in which only the vector current contributes to
zeroth order in α. They found GV = Gµ within roughly 1%. The result was very surprising, since even if one assumed
GV = Gµ at the Lagrangian level as a manifestation of universality, a close equality was not expected because nucleons
in β-decay are affected by strong interactions, while this is not the case for the leptons in muon decay. This prompted
Feynman and Gell-Mann (1958) to invoke the conserved vector current (CVC) hypothesis, previously discussed by
Gershtein and Zeldovich (1955). Specifically, the hadronic vector current in β decay is assumed to be conserved in the
presence of the strong interactions. Since conservation laws are generally associated with symmetries of the theory,
they further identified it with the ∆I3 = 1 isospin current. The near equality GV ≈ Gµ could then be understood on
the basis of two concepts: the principle of universality that states GV = Gµ at the Lagrangian level, and CVC that
implies that the strong interactions do not renormalize GV at q2 = 0 in the limit of isospin invariance.
CVC, in turn, had another important consequence. If the strangeness conserving (∆S = 0) vector cur-

rent is conserved, it would be natural to assume that the strangeness non-conserving (∆S = 1) vector cur-
rent in semileptonic decays is also conserved in some suitable limit. This was one of the main motivations for
the search for higher partial symmetries of the Strong Interactions. A number of possibilities were considered
(Behrends, Dretlein, Fronsdal, and Lee, 1962), culminating with the phenomenologically successful SU(3)flavor sym-
metry (Gell-Mann, 1962; Gell-Mann and Ne’eman, 1964). Gell-Mann also noted that a normalization of the hadronic
currents is necessary in order to define precisely the concept of universality. This was an important motivation for
Current Algebra (Gell-Mann, 1964a). In fact, the non-linearity of the basic Current Algebra relation

[Ja
0 (x), J

b
0(y)]x0=y0

= i fabcJc
0(x)δ

3(x⃗− y⃗) , (40)

τμ = 2196980.3(2.2)ps

GF = Gμ = 1.1663788(7) × 10−5GeV−2

Precise measurement of muon lifetime:

Precise determination of Fermi constant:

2
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experimental information is consistent with pure V , A, V ′ and A′ interactions. Possible deviations, which in the
four-component neutrino framework involve quadratic expressions in gi, g′i(i = S, T, P ) are expected to be very small
and can therefore be treated at the tree level. The products of these small deviations with (α/2π)f(x) and (α/2π)g(x)
are of second order in the small quantities and, therefore, are not considered significant.
At present, very precise measurements of ρ, δ, ξ and η are carried out in the TWIST experiment at TRIUMPH

(Bayes et al., 2011), and a very accurate determination of τµ has been made by the Mulan collaboration at PSI
(Webber et al., 2011).

C. The V -A Theory

The discovery of parity non-conservation led to another very important development: by greatly increasing the
number of observables available for experimental and theoretical study, it opened the way for the determination of
the basic phenomenological interaction. This led Sudarshan and Marshak (1957, 1958) and Feynman and Gell-Mann
(1958) to propose a universal V -A Fermi Interaction for charged current processes, such as muon decay, β decay and
the semileptonic decays of hyperons.
In the case of muon decay, this theory implies the validity of Eqs.(9,10) and furthermore states that

gA = −gV . (22)

Using the Fierz transformations (Fierz, 1937), Eqs.(9,10,22) lead to the following coupling constants g̃i, g̃′i in the
charge-exchange order:

g̃S = g̃′S = g̃T = g̃′T = g̃P = g̃′P = 0, (23)

g̃V = −g̃A = gV = −g̃′V = g̃′A . (24)

Defining Gµ ≡
√
2gV , Eqs.(9,10,22,23,24) lead to

L = −
Gµ√
2
[ψ̄νµγ

µ(1− γ5)ψµ][ψ̄eγµ(1 − γ5)ψνe ] + h.c. , (25)

= −
Gµ√
2
[ψ̄eγ

µ(1 − γ5)ψµ][ψ̄νµγµ(1 − γ5)ψνe ] + h.c. . (26)

Thus, the interaction Lagrangian for muon decay in the V -A theory has a very simple and elegant form that in-
volves a single coupling constant and is preserved in passing from the charge-retention to the charge-exchange order.
Eqs.(9,10,22) lead also to the sharp predictions:

ρ = δ = 3/4 , (27)

η = 0 , (28)

ξ = 1 , (29)

as can be readily verified by inserting Eq.(22) into Eqs.(12,13).
With the neglect of strong interaction effects, in the original version of the V -A theory other four-fermion interaction

processes were described by Lagrangian densities of the same form as Eq.(25). For example, for n → p+ e− + ν̄e, the
basic process for β decay, the Lagrangian density was postulated to be of the form.

Lβ−decay = −
GV√
2
[ψ̄pγ

µ(1− γ5)ψn][ψ̄eγµ(1 − γ5)ψνe ] + h.c. , (30)

where GV is the vector coupling constant in β-decay.

D. Radiative Corrections to Muon Decay in the V -A Theory and the Fermi Constant

Taking into account Eqs.(22,27,28,29), we see that in the V -A theory, the energy-angle distributions of e−(e+) in
muon decay are simply obtained by setting |gA| = gV = Gµ/

√
2, η = 0, ξ = 1 in the two-component theory expression

(Eq.(14)). In particular, the O(α) corrections are still governed by the functions f(x) and g(x). Furthermore, using
the transformation ψe → ψ′

e = γ5ψe, me → −me discussed in Section II.A, it can be shown that in the V -A theory
there are no contributions to the differential decay rate (Eq.(14)) that involve odd powers of me (Roos and Sirlin,

Neutron and nuclear beta decay rates:   
Kaon and hyperon decays? ( ) 
Is weak interaction universal? Strong interaction effects?

GV < Gμ
ΔS = 1
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
for the O(α) corrections to the electron or positron spectrum is given by

∆Pd3p =
α

2π
P 0d3p

{

6 ln

(

Λ

mp

)

+ g(E,Em) +
9

4

}

, (41)

g(E,Em) = 3 ln

(

mp

me

)

−
3

4
−

4

β
Li2

(

2β

1 + β

)

+ 4

[

tanh−1 β

β
− 1

] [

(Em − E)

3E
−

3

2
+ ln

{

2(Em − E)

me

}]

+
tanh−1 β

β

[

2(1 + β2) +
(Em − E)2

6E2
− 4 tanh−1 β

]

, (42)

where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2

V

(2π)4
(Em − E)2d3p (43)

is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.

The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,
can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

RC to spectrum:

Sirlin’s function : QED beyond Coulomb distortiong(E, Em)
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
for the O(α) corrections to the electron or positron spectrum is given by

∆Pd3p =
α

2π
P 0d3p

{

6 ln

(

Λ

mp

)

+ g(E,Em) +
9

4

}

, (41)

g(E,Em) = 3 ln

(

mp

me

)

−
3

4
−

4

β
Li2

(

2β

1 + β

)

+ 4

[

tanh−1 β

β
− 1

] [

(Em − E)

3E
−

3

2
+ ln

{

2(Em − E)

me

}]

+
tanh−1 β

β

[

2(1 + β2) +
(Em − E)2

6E2
− 4 tanh−1 β

]

, (42)

where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2

V

(2π)4
(Em − E)2d3p (43)

is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.
The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,

can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

Uncorrected spectrum for Fermi transition:

3

UV cut-off

Current algebra: UV div. part 
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
for the O(α) corrections to the electron or positron spectrum is given by

∆Pd3p =
α

2π
P 0d3p

{

6 ln

(

Λ

mp

)

+ g(E,Em) +
9

4

}

, (41)

g(E,Em) = 3 ln

(

mp

me

)

−
3

4
−

4

β
Li2

(

2β

1 + β

)

+ 4

[

tanh−1 β

β
− 1

] [

(Em − E)

3E
−

3

2
+ ln

{

2(Em − E)

me

}]

+
tanh−1 β

β

[

2(1 + β2) +
(Em − E)2

6E2
− 4 tanh−1 β

]

, (42)

where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2

V

(2π)4
(Em − E)2d3p (43)

is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.
The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,

can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

 average charge of fields involved:  but Q̄ : 1 + 2Q̄μ,νμ
= 0 1 + 2Q̄n,p = 2



Quark Mixing & CKM Unitarity
Standard Model

3 interactions, 3 generations of quarks and leptons, Higgs
Charged current interaction - β-decay (μ, π±, n)

π± μ±

ν(ν̄)
μ− e−νμ 

ν̄e
n

e−

ν̄e

p

CKM unitarity - measure of completeness of the SM:  |Vud|2+ |Vus|2+ |Vub|2=1

Cabbibo-Kabayashi-Maskawa: mass vs. flavor eigenstates
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1960’s: electroweak theory - SU(2)L x U(1)Y, massive W, Z bosons, EW mixing, …

Weak interaction of lepton and quarks is universal 
But its strength is distributed among quark families
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The CKM matrix

Measured CKM matrix must be unitary due to the
universality of the charged weak interaction in SM.  

The Cabibbo-Kobayashi-Maskawa (CKM) matrix represents the mixing between the 
flavor eigenstates of quarks to form mass eigenstates:

Top-row CKM unitarity 

Unitarity Violation BSM Physics



Landscape Change in Top-Row CKM Unitarity
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PDG 2018:

|Vud |2 + |Vus |2 + |Vub |2 = 0.9994(4)Vud
(2)Vus

PDG 2020:

|Vud |2 + |Vus |2 + |Vub |2 = 0.9985(3)Vud
(4)Vus

� ���� ���� ��������	
����������� �� ��
��������������������������


 
 
 ��
�������	
�
��	��
���	
��

�����

������	�����������




���������������
��
������ ����
�����	
��



����	
��
������

������


����

����

���


��
��
���

��
��

�� ���!��� "�����#���$������$� %��&�����$������$�

'�""�%(�)(*(�)�+,������*%-�'./��%0(*"0(1���

�����

��2��

�����

���&���
���������� �

�����$� ���&���
!���$��

 �$�

��
� ��������
���������
��Vud = 0.97420(18)RC(10)ℱt

 from neutron decay asymmetry improved by factor 4gA
Vud = 0.9763(5)τn

(15)gA
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Seng, MG, Patel, Ramsey-Musolf, 1807.10197;  
Seng, MG, Ramsey-Musolf, 1812.03352 

MG, 1812.04229

PERKEO-III 
Märkisch et al., 1812.04666

Scrutiny of nuclear uncertainties  
If taken at face value: 

ℱt = 3072.1(7) → 3072.0(2.0)
V0+

ud = 0.9737(1)RC(3)ℱt



RC to beta decay: overall setup

Tree-level amplitude

6

Electron carries away energy  
Energy scales:

E ≤ Q

me ≈ 0.5 MeV

Qif = Mi − Mf = 1 − 10 MeV
Electron mass

Decay Q-value (endpoint energy)
Λnuc = 10 − 30 MeV
Nuclear scale

Λhad = 300 MeV
Hadronic scale

MZ, MW ∼ 90 GeV
Weak boson scale

i = n, A(0+) f = p, A′�(0+)

e±

νe(ν̄e) ∼ Vud

Radiative corrections to tree-level amplitude ∼ α/2π ≈ 10−3

Precision goal for Vud extraction 1 × 10−4

α
2π ( E

Λ
, ln

E
Λ

, …)E-dep RC:
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Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively

Radiative Corrections: Modern Treatment
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

W,Z-exchange:  
UV-sensitive, pQCD;  
model-independent

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM
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Diagrams taken from Ando et al, PLB 595 (2004) 250
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establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM

5
Diagrams taken from Ando et al, PLB 595 (2004) 250

Outer (depend on e-energy):  
retain only IR divergent pieces 

Inner RC  — energy-independentΔV
R

When 𝛾 involved:  
sensitive to long range physics; 
model-dependent!

7

E/me not small, need to account for exactly.  
Coulomb distortion: resummation of (Z𝛼)n —> Dirac equation in the Coulomb field 
IR finite piece: can set me=0 —> if energy-dependent ~ (𝛼/2𝜋) x (E/Λhad) 

V x V correlator protected by CVC - no hadronic uncertainty 
Axial vector not conserved —> A x V correlator from 𝛾W box sensitive to hadron structure

ΔV
R = 2□A×V

γW + model independent

|Vud |2 =
5024.7 s

τn(1 + 3gA2)(1+ΔR)
|Vud |2 =

2984.43s
ℱt(1+ΔV

R)
Superalloweds Neutron
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4

Single-nucleon radiative correction

Superallowed 0+ → 0+ :  

Experiment + nuclear corrections Single-nucleon radiative correction (RC)

Uncertainty halved but central value shifted!

Major source of theory uncertainty: “gW-box diagram”

Estimate by Marciano and Sirlin, state-of-the-art result
from 2006 to 2018:

Year 2018: new evaluation with dispersion relation (DR) :

CYS, Gorchtein, Patel and
Ramsey-Musolf, 2018 PRL

Confirmed later by independent studies: Czarnecki, Marciano and Sirlin, 2019 PRD
Hayen, 2020
Shiells, Blunden and Melnitchouk, 2020

4

Single-nucleon radiative correction

Superallowed 0+ → 0+ :  

Experiment + nuclear corrections Single-nucleon radiative correction (RC)

Uncertainty halved but central value shifted!

Major source of theory uncertainty: “gW-box diagram”

Estimate by Marciano and Sirlin, state-of-the-art result
from 2006 to 2018:

Year 2018: new evaluation with dispersion relation (DR) :

CYS, Gorchtein, Patel and
Ramsey-Musolf, 2018 PRL

Confirmed later by independent studies: Czarnecki, Marciano and Sirlin, 2019 PRD
Hayen, 2020
Shiells, Blunden and Melnitchouk, 2020

Universal RC from dispersion relations

Generalized Compton tensor  
time-ordered product — complicated!

Commutator (Im part) - only on-shell  
hadronic states — related to data

∫ dxeiqx⟨Hf(p) | [Jμ
em(x), Jν,±

W (0)] |Hi(p)⟩∫ dxeiqx⟨Hf(p) |T{Jμ
em(x)Jν,±

W (0)} |Hi(p)⟩

ImTμν
γW = … +

iεμναβpαqβ

2(pq)
FγW

3 (x, Q2)Interference  structure functionγW

□VA
γW =

3α
2π ∫

∞

0

dQ2

Q2

M2
W

M2
W + Q2

MγW(0)
3 (Q2)

Model-dependent part or RC: -boxγW

Box ~ 1st Nachtmann moment of  
Symmetry: only isoscalar photons contribute

FγW(0)
3

M3(n, Q2) =
n + 1
n + 2 ∫

1

0

dxξn

x2

2x(n + 1) − nξ
n + 1

F3(x, Q2), ξ =
2x

1 + 1 + 4M2x2 /Q2
Nachtmann moments:

Physics of model dependence: virtual photon polarizes the nucleus;  
Long-range part of the box sensitive to hadronic polarizabilities; 
Polarizabilities are related to the excitation spectrum via a dispersion relation (sum rule)



Input into dispersion integral

5

FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy

14

W Wγγ

q q q q

p ppp

Optical theorem: ),(4),(Dis 2)0(
3

2)0(
3 QFQT νπν =

( ) ),(
2

)()2(
4
1 2)0(

30,
44 QF

m
qpi

nJXXJppqp
N

AWEM
X

X ν
ν

ε
δπ

π
βα

µναβ
νµ =−+∑

ν wrt odd is  since n termsubtractioconstant  No )0(
3T

Dispersive Approach: Formalism

Dispersion in energy:  
scanning hadronic intermediate states

Dispersion in Q2:  
scanning dominant physics pictures

2W

2Q

( )2πmM +2M

Bo
rn

Parton + pQCD

Nπ Res.
+B.G

Regge
+VMD

2GeV2~

2GeV5~

Boundaries between regions - approximate 

Input in DR related (directly or indirectly) 
to experimentally accessible data 

9

W2 = M2 + 2Mν − Q2



Input into dispersion integral -  dataν/ν̄

10

Isospin symmetry: vector-isoscalar current related to vector-isovector current

Mixed CC-NC  SF (no data) <—> Purely CC SF (inclusive neutrino data)γW

6

Single-nucleon radiative correction

Major limitating factor in the DR treatment:  low quality of the neutrino data in the most 
interesting region: Q2 ~ 1GeV2

Neutrino scattering data Free neutron gW box

Better-quality data may come from the Deep Underground Neutrino Experiment (DUNE),
which is however not in reach in the near future.

The next major breakthrough has to come from first-principles calculations!

6

Single-nucleon radiative correction

Major limitating factor in the DR treatment:  low quality of the neutrino data in the most 
interesting region: Q2 ~ 1GeV2

Neutrino scattering data Free neutron gW box

Better-quality data may come from the Deep Underground Neutrino Experiment (DUNE),
which is however not in reach in the near future.

The next major breakthrough has to come from first-principles calculations!

Main limitation: low quality of neutrino data (old bubble-chamber experiments) 
Better neutrino data from DUNE (Snowmass 2022 LOI in preparation) 
Next breakthrough: first principle calculation on the lattice

Marciano, Sirlin 2006:  —> ΔV
R = 0.02361(38) |Vud | = 0.97420(10)Ft(18)RC

DR (Seng et al. 2018):  —> ΔV
R = 0.02467(22) |Vud | = 0.97370(10)Ft(10)RC



First lattice QCD calculation of -boxγW

11

Neutron -box - complicated 
Address (very rare! BR ~ ) pion decay 

γW
10−8 π+ → π0 + e+ + νe

Γπℓ3 =
G2

F |Vud |2 m5
π | f π

+(0) |2

64π3
(1 + δ)Iπ = 0.3988(23) s−1Partial decay width:

Form factor: well under control 
RC: estimate in PT: χ δ = 0.0334(10)LEC(3)HO Cirigliano et al., 2003

4

Single-nucleon radiative correction

Superallowed 0+ → 0+ :  

Experiment + nuclear corrections Single-nucleon radiative correction (RC)

Uncertainty halved but central value shifted!

Major source of theory uncertainty: “gW-box diagram”

Estimate by Marciano and Sirlin, state-of-the-art result
from 2006 to 2018:

Year 2018: new evaluation with dispersion relation (DR) :

CYS, Gorchtein, Patel and
Ramsey-Musolf, 2018 PRL

Confirmed later by independent studies: Czarnecki, Marciano and Sirlin, 2019 PRD
Hayen, 2020
Shiells, Blunden and Melnitchouk, 2020

□VA
γW =

3α
2π ∫

∞

0

dQ2

Q2

M2
W

M2
W + Q2

MγW(0)
3π (Q2)

All values of Q contribute to the integral 
Use perturbative QCD 4-loop result for Q2 ≥ 2 GeV2

8

LQCD not applicable at large Q2 (> 2 GeV2) due to large lattice artifacts. But 
perturbative QCD works well:

First lattice QCD calculation

Charged pion gW-box diagrams

p- p0
Integral sensitive to all values of Q2

Baikov, Chetyrkin and Kuhn, 
2010 PRLFor low : direct lattice calculation of the generalized Compton tensorQ2 ≤ 2 GeV2

Feng, MG, Jin, Ma, Seng 2003.09798
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tablished [2] that only the axial �W -box contribution is
sensitive to hadronic scales; see Fig. 1 for the �W dia-
grams. The relevant hadronic tensor TV A

µ⌫
is defined as

TV A

µ⌫
=
1

2 �
d4xeiqx�Hf(p)�T �J

em

µ
(x)JW,A

⌫
(0)� �Hi(p)�,

(1)
for a semileptonic decay process Hi → Hfe⌫̄e. Above,
Hi�f are given by neutron and proton for the neutron
beta decay, and by ⇡− and ⇡0 for the pion semileptonic
decay, respectively. Furthermore, Jem

µ
=

2
3 ū�µu−

1
3 d̄�µd−

1
3 s̄�µs is the electromagnetic quark current, and JW,A

⌫
=

ū�⌫�5d is the axial part of the weak charged current.

Figure 1. The �W -box diagrams for the semileptonic decay
process Hi →Hfe⌫̄e.

The spin-independent part of TV A

µ⌫
has only one term,

TV A

µ⌫
= i✏µ⌫↵�q

↵p�T3 + . . . , where T3 is a scalar function.
For the neutron beta decay, the spin-dependent contri-
butions, denoted by the ellipses here, are absorbed into
the definition of the nucleon axial charge gA, which can
be measured directly from experiments. According to
current algebra [2], it is this spin-independent term that
gives rise to the hadron structure-dependent contribution
and dominates the uncertainty in the theoretical predic-
tion. Using T3 as input, the axial �W -box correction to
the tree-level amplitude is given as [3]

�
V A

�W
�
H
=

1

FH+
↵e

⇡ �
∞

0
dQ2 m2

W

m2
W
+Q2

×�

�
Q2

−�Q2

dQ0

⇡

(Q2
−Q2

0)
3
2

(Q2)2
T3(Q0,Q

2
). (2)

Here Q2
= −q2 > 0 is the spacelike four-momentum

square. The normalization factor FH+ arises from the lo-
cal matrix element �Hf(p

′
)�JW,V

µ
�Hi(p)� = (p + p

′
)µF

H+ ,

with FH+ = 1 for the neutron and
√
2 for the pion decay.

Methodology – In the framework of lattice QCD, the
hadronic tensor TV A

µ⌫
in Euclidean spacetime is given by

TV A

µ⌫
=
1

2 �
dt e−iQ0t

� d3xe−i �Q⋅�xHV A

µ⌫
(t, �x) (3)

with HV A

µ⌫
(t, �x) defined as

H
V A

µ⌫
(t, �x) ≡ �Hf(P )�T �J

em

µ
(t, �x)JW,A

⌫
(0)� �Hi(P )�. (4)

Here the Euclidean momenta P and Q are chosen as

P = (imH ,�0), Q = (Q0, �Q) (5)

with mH the hadron mass.
By multiplying ✏µ⌫↵�Q↵P� to TV A

µ⌫
, we can extract the

function T3(Q0,Q
2
) through

T3(Q0,Q
2
) = −

I

2m2
H
� �Q�2

, I = ✏µ⌫↵�Q↵P�T
V A

µ⌫
. (6)

Here I can be written in terms of HV A

µ⌫
as

I =
i

2
✏µ⌫↵0Q↵mH � dt e−iQ0t

� d3�xe−i �Q⋅�xHV A

µ⌫

=
mH

2 �
dt e−iQ0t

� d3�xe−i �Q⋅�x✏µ⌫↵0 @H
V A

µ⌫

@x↵

. (7)

We can average over the spatial directions for �Q and have

I =
mH

2 �
dt e−iQ0t

� d3�x j0 �� �Q���x�� ✏µ⌫↵0
@HV A

µ⌫

@x↵

=
mH

2 �
dt e−iQ0t

� d3�x
� �Q�

��x�
j1 �� �Q���x�� ✏µ⌫↵0x↵H

V A

µ⌫
,

(8)

where jn(x) are the spherical Bessel functions. A key
ingredient in this approach is that once the Lorentz scalar
function ✏µ⌫↵0x↵H

V A

µ⌫
is prepared, e.g. from a lattice

QCD calculation, one can determine T3(Q0,Q
2
) directly.

Putting Eqs. (8) and (6) into Eq. (2) and changing

the variables as � �Q� =
�

Q2 cos ✓ and Q0 =
�

Q2 sin ✓, we
obtain the master formula

�
V A

�W
�
H
=
3↵e

2⇡ �
dQ2

Q2

m2
W

m2
W
+Q2

MH(Q
2
) (9)

with

MH(Q
2
) = −

1

6

1

FH+

�

Q2

mH

� d4x!(t, �x)✏µ⌫↵0x↵H
V A

µ⌫
(t, �x),

!(t, �x) = �

⇡
2

−⇡
2

cos3 ✓ d✓

⇡

j1 �
�

Q2��x� cos ✓�

��x�
cos �
�

Q2t sin ✓� .

(10)

For small Q2, lattice QCD can determine the function
MH(Q

2
) with lattice discretization errors under control.

For largeQ2, we utilize the operator product expansion

1

2 �
d4xe−iQxT �Jem

µ
(x)JW,A

⌫
(0)�

=
i

2Q2
�Ca(Q

2
)�µ⌫Q↵ −Cb(Q

2
)�µ↵Q⌫

−Cc(Q
2
)�⌫↵Qµ�J

W,A

↵
(0)

+
1

6Q2
Cd(Q

2
)✏µ⌫↵�Q↵J

W,V

�
(0) +�. (11)

There are only four possible local operators at leading
twist. (For the pion decay, the hadronic matrix ele-
ments for the first three operators vanish.) Multiplying

MγW(0)
3π (Q2) = −

1

6 2

Q
mπ ∫ d4xω(Q, x)εμνα0xαℋVA

μν (x)

Main executors: Xu Feng (Peking U.), Lu-Chang Jin (UConn/RIKEN BNL) 
Supercomputers: Blue Gene/Q Mira computer (Argonne, USA),  

       Tianhe 3 prototype (Tianjin, China)

Lattice setup: 
5 LQCD gauge ensembles at physical pion mass 
Generated by RBC and UKQCD collaborations  
w. 2+1 flavor domain wall fermion

9

At low Q2 (< 2 GeV2): direct lattice computation of the generalized Compton tensor

First lattice QCD calculation

Lattice setup:
Five lattice QCD gauge ensembles
at the physical pion mass, generated 
by RBC and UKQCD Collaborations using
2+1 flavor domain wall fermion.

Blue: DSDR  
Red : Iwasaki

Quark contraction diagrams 9

At low Q2 (< 2 GeV2): direct lattice computation of the generalized Compton tensor

First lattice QCD calculation

Lattice setup:
Five lattice QCD gauge ensembles
at the physical pion mass, generated 
by RBC and UKQCD Collaborations using
2+1 flavor domain wall fermion.

Blue: DSDR  
Red : Iwasaki

Quark contraction diagrams

12

First lattice QCD calculation of -boxγW
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First lattice QCD calculation

(integral range, 64I)

Estimate of major systematic effects:
● Lattice discretization effect: Estimated using the discrepancy between DSDR and Iwasaki
● pQCD calculation: Estimated from the difference between 3-loop and 4-loop results
● Higher-twist effects at large Q2: Estimated from lattice calculation of type (A) diagrams  

Final result:

1% precision!

(before cont. extrapolation) (after cont. extrapolation)

First lattice QCD calculation of -boxγW

Significant reduction of the uncertainty! δ : 0.0334(10)LEC(3)HO → 0.0332(1)γW(3)HO

13

Cleanest way to access  theoretically:  
Next-gen experiments: aim at 1 o.o.m. exp. uncertainty improvement 

Vud |Vud | = 0.9740(28)exp(1)th
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Implications for the free nucleon -boxγW

12

Implications of the study

2. On free neutron and superallowed nuclear decays:

The “asymptotic” contribution is extracted 
from the pion lattice curve; result consistent

 with 2018 but much more solid

2018

2020 pQCD

It provides an independent assessment 
of the single-nucleon RC:

CYS, Feng, Gorchtein and Jin,
2020 PRD

Main uncertainty of the DR calculation of the free neutron -box: 
Poorly constrained parameters of the Regge contribution which dominates  
the Nachtmann moment at  
Use the Regge universality and a body of , N, NN scattering data.

γW

Q2 ∼ 1 − 2 GeV2

ππ π
Seng, MG, Feng, Jin, 2003.11264

3

Figure 3: The Regge-exchange contribution to F (0)
3 for neu-

tron and pion. The vertical propagator represents the ex-
change of the ⇢-trajectory.

low 2 GeV2 e↵ects of generic higher-twist terms start to
show up, and the LO OPE+pQCD prediction disagrees
significantly with the lattice result.

We shall describe how the lattice result for �V A

�W
on the

pion can be used to improve our understanding of �V A

�W

on the neutron. First, for the neutron we parametrized

the structure function F
(0)
3N (hence, also M

(0)
3N ) as [3, 4]:

F
(0)
3N = F

(0)
3N,el +

(
F

(0)
3N,res + F

(0)
3N,⇡N

+ F
(0)
3N,R, Q

2
 Q

2
0,

F
(0)
3N,pQCD, Q

2
� Q

2
0,

(5)
where Q

2
0 ⇡ 2 GeV2 is the scale above which the LO

OPE + pQCD description is valid. Above, we isolated
the contributions from the elastic intermediate state (el)
fixed by the nucleon magnetic [17, 18] and axial elastic
form factor [19], from the non-resonance ⇡N continuum
(⇡N) in the low-energy region, from the N

⇤ resonances
(res) 2, and the Regge contribution (R) that allow to
economically describe the multi-hadron continuum.

In a similar way, we parametrize the pion structure
function as

F
(0)
3⇡ =

(
F

(0)
3⇡,res + F

(0)
3⇡,R, Q

2
 Q

2
0,

F
(0)
3⇡,pQCD, Q

2
� Q

2
0.

(6)

We note the absence of the elastic and the low-energy
continuum contributions. The former is identically zero
because the axial current does not couple to the spin-0
pion ground state. The latter would correspond to the
non-resonant part of the ⇡⇡ continuum in the p-wave;
however, this partial wave is known to be entirely domi-
nated by the ⇢

0 resonance up to the KK̄ threshold.
Comparing the parameterizations of Eqs. (5,6), we

make an important observation. Among the various con-
tributions there are the process-specific ones that reside
in the lower part of the spectrum (elastic, resonance and

that of F
(0)
3H at O(↵3

s), but such a di↵erence is numerically in-

significant at Q2 > 2 GeV2.
2 � resonances do not contribute due to the isoscalar nature of the
photon.

low-energy continuum). They have to be explicitly cal-
culated for the pion and for the nucleon and cannot be
related to each other. On the other hand, the asymptotic
contributions (Regge and pQCD) are universal. This is
the central point of our analysis.

Universality of the OPE is straightforward. The only

di↵erence between F
(0)
3N,pQCD and F

(0)
3⇡,pQCD is in the

normalization of the isospin states, thus F
(0)
3⇡,pQCD =

(F⇡
�

+ /F
n

+)F
(0)
3N,pQCD.

Universality is among the central predictions of Regge
theory. It dictates that the upper and lower vertices in
the Regge ⇢-exchange amplitudes T ⇢(W++⇡

�
! �+⇡

0)
and T

⇢(W+ + n ! � + p) in Fig. 3 factorize, so that,
e.g.,

R⇡/N =
T

⇢

W++⇡�!�+⇡0

T
⇢

W++n!�+p

=
T

⇢

⇡⇡!⇡⇡

T
⇢

⇡N!⇡N

=
T

⇢

⇡N!⇡N

T
⇢

NN!NN

, (7)

where T
⇢

⇡⇡!⇡⇡
, T

⇢

⇡N!⇡N
, T

⇢

NN!NN
stand for the ampli-

tudes in elastic ⇡⇡, ⇡N, NN scattering in the channel
that corresponds to an exchange of the quantum num-
bers of the ⇢ meson in the t-channel. Regge factorization
has been tested on global data sets for elastic pion, pion-
nucleon and nucleon-nucleon scattering.

This leads to a prediction based on Regge universality,

F
(0)
3N,R(x,Q

2) = R
�1
⇡/N

F
n

+A(Q
2)fN

th(W
2)

✓
Q

2

x

◆↵
⇢
0

(8)

F
(0)
3⇡,R(x,Q

2) = F
⇡
�

+ A(Q2)f⇡

th(W
2)

✓
Q

2

x

◆↵
⇢
0

,

with ↵
⇢

0 = 0.477 [20]. Here we define the threshold func-
tion f

H

th = ⇥(W 2
�W

2
th,H)(1� exp[(W 2

th,H �W
2)/⇤2]),

where W
2 = M

2
H
+Q

2( 1
x
� 1) and ⇤ = 1GeV2 [21]. The

threshold parameter Wth,H characterizes the threshold
for the multi-hadron contributions. In Ref. [3] we fixed
Wth,N = mN + 2M⇡, such that the threshold function
f
N

th ⇡ 1 for W & 2.5GeV. In the pion sector, one expects
Wth,⇡ to lie between M⇢ and 1.2 GeV, the scale above
which Regge description is valid [22]. In this work we
choose Wth,⇡ ⇡ 1 GeV, and account for the uncertainty
due to its variation between the two boundaries.

The function A(Q2) describes the interaction at the
upper half of Fig.3 and is, within the Regge framework,
common for neutron and pion. It is generally unknown
but is now completely fixed by the lattice result plotted
in Fig.2—upon subtracting the resonance contribution.
With these ingredients, the ratio of the first Nachtmann
moments of the Regge contributions reads,

M
(0)
3N,R(1, Q

2)

M
(0)
3⇡,R(1, Q

2)
=

1

R⇡/N

R 1
0 dx

1+2rN
(1+rN )2 f

N

th(W
2)x�↵

⇢
0

R 1
0 dx

1+2r⇡
(1+r⇡)2

f
⇡

th(W
2)x�↵

⇢
0

. (9)

To fully specify the parametrization of F (0)
3⇡ we turn

now to the resonance contribution depicted in Fig. 4.

Independent confirmation of the empirical DR result AND uncertainty 
ΔV

R = 0.02467(22)DR → 0.02477(24)LQCD+DR

Czarnecki, Marciano, Sirlin, Phys.Rev. D 100 (2019) 7, 073008 
Shiells, Blunden, Melnitchouk, Phys.Rev.D 104 (2021) 3, 033003 

Hayen, Phys.Rev.D 103 (2021) 11, 113001
DR result confirmed by other groups



Summary of universal RC

RC uncertainty halved, model dependence (of the uncertainty!) thoroughly tested 

Reason for improvement:  
a new method (dispersion relations) allowed to combine independent inputs 

Experimental neutrino data + lattice QCD + ChPT + Regge phenomenology 

Fully up to date for a 0.01% determination of Vud  

With improved experimental precision for ( ) neutron decay becomes competitiveτn, gA

0+-0+	nuclear	decays

|Vud |2 =
5024.7 s

τn(1 + 3gA2)(1+ΔR)

|Vud |2 =
2984.43s

ℱt(1+ΔV
R) |V0+−0+

ud | = 0.9737 (1 − 3)exp+nucl (1)RCn

Free	neutron	decay |V free n
ud | = 0.9733 (3)τn

(3)gA
(1)RCn

|Vπℓ3
ud | = 0.9739 (27)exp (1)RCπPion	decay	π+ → π0e+νe |Vud |2 =

0.9799
(1+δ)

Γπℓ3

0.3988(23) s−1
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Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
R)

, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
,(52)

the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
B ! C Nucl.

B = C free n
B + [q(0)S qA � 1]C free n

B . (53)

The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion

Input in the DR for the universal RC Input in the DR for the RC on a nucleus

Towards a coherent and unified picture of neutrino-nucleus interactions

* An accurate understanding of nuclear structure and dynamics is required to

disentangle new physics from nuclear effects *

* ω ∼ few MeV, q ∼ 0: β -decay, ββ -decays

* ω ∼ few MeV, q ∼ 102 MeV: Neutrinoless ββ -decays

* ω ! tens MeV: Nuclear Rates for Astrophysics

* ω ∼ 102 MeV: Accelerator neutrinos, ν-nucleus scattering
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RC for nuclear decay

NS correction reflects this extraction of the free box

Nuclear modification in the lower part of the spectrum

ΔV
R ∝ Ffree n

3 ∝ ∫ dxeiqx ∑
X

⟨p |Jμ,(0)
em (x) |X⟩⟨X |Jν,+

W (0) |n⟩

ΔV
R + δNS ∝ FNucl.

3 ∝ ∫ dxeiqx ∑
X′ �

⟨A′ �|Jμ,(0)
em (x) |X′ �⟩⟨X′ �|Jν,+

W (0) |A⟩

RC on a free neutron

RC on a nucleus

δNS = 2[ □VA, nucl
γW − □VA, free n

γW ]

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′�R)(1 − δC + δNS)(1 + ΔV

R)
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data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now
the one-body current contribution, we write the nuclear
�W Compton amplitude schematically as

T �W nuc

µ⌫ ⇠ hf |JW
µ Gnuc J

EM

⌫ |ii (57)

where |ii and |fi are the intitial and final nuclear states;
JW
µ and JEM

⌫ are the weak charged current and electro-
magnetic current, respectively; and

Gnuc =
X

n

|nihn|

En � E0

(58)

is the nuclear Green’s function (we have omitted space-
time arguments for simplicity). Considering first fully
relativistic nucleons described by Dirac spinors N , the
one-body weak current in momentum space is

JW
µ =

X

k

N̄k

⇥
gA(Q

2)⌧3(k)�µ + · · ·
⇤
Nk

⌘

X

k

JW
µ (k) (59)

where the “+ · · · ” indicate contributions from the weak
magnetism and induced pseudoscalar terms and where
the sum is over all nucleons k = 1, . . . , A. A correspond-
ing expression involving the charge and magnetic form
factors applies to JEM

⌫ .
In the treatment of Ref. [5], the one-body contribu-

tion to the matrix element in Eq. (57) is decomposed
into two terms: (A) a contribution singling out the same
nucleon in JW

µ and JEM
⌫ ; (B) a contribution involving

distinct nucleons in these two operators. For purposes of
the following discussion, it is useful to identify these two
contributions using Eqs. (57 - 59):

T �W nuc

µ⌫ ⇠

X

k,`

hf |JW
µ (k)Gnuc J

EM

⌫ (`)|ii (60)

= TA
µ⌫ + TB

µ⌫

where

TA
µ⌫ =

X

k

hf |JW
µ (k)Gnuc J

EM

⌫ (k)|ii (61)

TB
µ⌫ =

X

k 6=`

hf |Wµ (k)Gnuc J
EM

⌫ (`)|ii (62)

Here, TA
µ⌫ and TB

µ⌫ correspond, respectively, to contri-
butions (A) and (B) mentioned above. The authors of
Ref. [5] refer to a part of contribution (A) as the nu-
clear Born term, while contribution (B) is included as a
separate part of �NS .

As first articulated in the earlier work of Ref. [44],
the nuclear Born term is evaluated by replacing the free
nucleon isovector axial form factor gA(Q2) and isoscalar
magnetic form factor GM (Q2) by “quenched” values.
This procedure is motivated by the observation that use
of the free nucleon form factors in the one-body cur-
rents over-predicts the strength of nuclear Gamow-Teller
transitions and nuclear magnetic moments [48, 49]. The
corresponding isoscalar magnetic moment and isovector

axial coupling quenching parameters, q(0)S and qA, re-
spectively, then describe the reduction of the spin-flip
interaction strengths in the nuclear environment, with

q(0)S , qA  1. In evaluating the nuclear Born contribution
to ⇤VA

�W , the authors of Ref. [5] then evaluate the contri-
bution (A) as described above but with these quenching
factors applied:

TA
µ⌫ !

X

k

hf |gJW
µ (k)Gnuc

gJEM
⌫ (k)|ii (63)

!

X

k

hf |gJW
µ (k)

h
SF ⌦GA00

nuc

i
gJEM
⌫ (k)|ii

where fJµ denotes a current operator containing the
quenching factor and where, in the last step, the nuclear
Green’s function has been replaced by the direct product
of the free nucleon propagator, SF , and the Green’s func-
tion for an intermediate “spectator nucleus”, A00. The
loop integral used in obtaining CB for the free nucleon,
which contains SF , is then evaluated without further ref-
erence to the spectator nucleus but with the quenched
form factors included. One then writes,

C free n

B ! C Nucl.
B = C free n

B + [q(0)S qA � 1]C free n

B , (64)

and includes the second term on the RHS of Eq. (64) in
�NS .

Note that this treatment relies on several assumptions:
(i) the impact of the nuclear environment is dominated
by the transitions to the low-lying states |ni; (ii) the
nucleon form factors entering the �W box graph for a
single nucleon should inherit the impact of this appar-
ent modification of the one-body currents in low-lying
nuclear transitions; (iii) the quenching observed for pure
Gamow-Teller and for magnetic moments and pure mag-
netic transitions translates directly into a mixed Gamow-
Teller ⌦ magnetic response via the product of the cor-

Need to know the full nuclear Green’s function 
indices k, l count the nucleon d.o.f. in a nucleus

(A) same active nucleon 

(B) two nucleons correlated by G

Case (A): non-interacting (=on-shell) neutron propagating between interaction vertices 
Case (B): all two-nucleon contributions (QE 2p2h and nuclear excitations)

Insert on-shell intermediate states: TA
μν → ∑

k

⟨ f |JW
μ (k)[SN

F ⊗ GA′ �′�
nuc]JEM

ν (k) | i⟩

The elastic nucleon box 
is replaced by a single N QE knockout
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Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
R)

, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
,(52)

the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
B ! C Nucl.

B = C free n
B + [q(0)S qA � 1]C free n

B . (53)

The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion

G
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Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
R)

, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
,(52)

the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
B ! C Nucl.

B = C free n
B + [q(0)S qA � 1]C free n

B . (53)

The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion

Idea: calculate Gamow-Teller and magnetic nuclear transitions in the shell model; 
Insert the single nucleon spin operators —> predict the strength of nuclear transitions 
“Quenching of spin operators in nuclei”: shell model overestimates those strengths! 
Each vertex is suppressed by 10-15%

But from dispersion relation perspective it corresponds  
to a contribution of an excited nuclear state,  
not to the modified box on a free nucleon! 
The correct estimate should base on quasielastic knockout 
with an on-shell N + spectator in the intermediate state 

Note that continuum is outside shell model Hilbert space!

Numerically: on average between the 14 superallowed decays
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Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
R)

, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
,(52)

the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
B ! C Nucl.

B = C free n
B + [q(0)S qA � 1]C free n

B . (53)

The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion

δquenched Born
NS = [q(0)

S qA − 1]2 □free n, Born
γW ≈ − 0.058(14) %

□quenched Born
γW − □Born

γW = [q(0)
S qA − 1] □Born

γW



were performed for a single parent, each with a different
shell-model Hamiltonian.! The last column lists the values
we adopt for "NS : these values result from our assessment of
the quenched results from all calculations made for each
decay—not just the ones shown in the previous columns—
with uncertainties chosen to encompass the spread in the
results from those calculations.
Extra details are also given in columns 3–6 of the table

for the quenched calculation since this is the version that we
ultimately use in evaluating Vud . With two-body operators
there are two types of contributions: those in which both
interacting nucleons are in the valence model space, and
those in which one nucleon is in the valence space and one is
in the closed-shells core. In the latter case a sum is required
over all the core nucleons. The isospin structure of the op-
erator is interesting to note: the weak interaction contribution
is isovector, while the electromagnetic contribution is isosca-
lar or isovector. The combined operator therefore is either
isovector or isotensor. #An isoscalar combination is just pro-
portional to the unit operator in isospin space and does not
induce a Fermi transition.! Both the valence nucleons and
those in the core contribute to the result for isovector opera-
tors, only the valence nucleons contribute to the isotensor
operators.
In Table II we show contributions to CNS from the various

components of the electromagnetic interaction: orbital isos-
calar #os!, spin isoscalar #ss!, orbital isovector #ov!, and spin
isovector #sv!. Note that the spin contributions are larger than

the orbital contributions. Further, and more interesting, the
isoscalar and isovector contributions are in phase when the
decaying nucleus has Tz!"1 and out of phase when the
decaying nucleus has Tz!0. This indicates that much larger
corrections are obtained in the Tz!"1 series than in the
Tz!0 series. If one looks at mirror transitions, this effect
alone contributes between 0.1 to 0.3% to a mirror asymme-
try in the f t values. Since current experiments aim at 0.1%
accuracy, this effect might just be at the edge of detectability.

C. Isospin symmetry-breaking corrections

Turning, next, to the isospin-symmetry breaking correc-
tion "C it too can be separated into two components

"C!"C1#"C2 . #14!

The first term "C1 arises from Coulomb and charge-
dependent nuclear interactions that induce configuration
mixing among the 0# state wave functions in both the parent
and daughter nuclei. Being charge dependent, this mixing
serves to break isospin symmetry between the analog parent
and daughter states of the superallowed transition. The sec-
ond term "C2 is due to small differences in the single-particle
neutron and proton radial wave functions, which cause the

TABLE II. Shell-model calculations of the nuclear-structure dependent component of the radiative correction "NS . The four components
that are summed to give CNS characterize the four electromagnetic couplings: os ! orbital isoscalar, ss ! spin isoscalar, ov ! orbital
isovector, and sv ! spin isovector.

Parent Unquenched Quenched CNS (q"1)$ "NS(%)

nucleus CNS os ss ov sv total CBorn(free) Quenched Adopted

Tz!"1:
10C "1.669 0.002 "0.283 "0.002 "1.065 "1.348 "0.188 "0.357 "0.360#35!
14O "1.360 "0.008 "0.341 0.082 "0.782 "1.049 "0.221 "0.295 "0.250#50!
18Ne "1.531 "0.011 "0.249 "0.119 "0.812 "1.191 "0.210 "0.325 "0.290#35!
22Mg "1.046 "0.009 "0.222 "0.067 "0.497 "0.796 "0.226 "0.237 "0.240#20!
26Si "0.986 "0.007 "0.224 "0.086 "0.424 "0.741 "0.242 "0.228 "0.230#20!
30S "0.800 0.002 "0.287 0.020 "0.300 "0.566 "0.257 "0.191 "0.190#15!
34Ar "0.770 0.014 "0.322 0.061 "0.272 "0.519 "0.273 "0.184 "0.185#15!
38Ca "0.693 0.041 "0.358 0.091 "0.214 "0.440 "0.288 "0.169 "0.180#15!
42Ti "1.011 "0.016 "0.181 "0.225 "0.354 "0.776 "0.256 "0.240 "0.240#20!
Tz!0:
26mAl 0.352 "0.007 "0.224 0.086 0.424 0.279 "0.242 0.009 0.009#20!
34Cl "0.135 0.015 "0.333 "0.064 0.280 "0.101 "0.273 "0.087 "0.085#15!
38mK "0.276 0.042 "0.363 "0.093 0.216 "0.198 "0.288 "0.113 "0.100#15!
42Sc 0.472 "0.016 "0.182 0.228 0.358 0.389 "0.256 0.031 0.030#20!
46V 0.101 "0.004 "0.197 0.099 0.198 0.096 "0.263 "0.039 "0.040#7!
50Mn 0.054 "0.009 "0.184 0.104 0.152 0.063 "0.270 "0.048 "0.042#7!
54Co 0.161 "0.013 "0.180 0.133 0.203 0.144 "0.277 "0.031 "0.029#7!
62Ga 0.172 0.005 "0.289 "0.058 0.445 0.103 "0.289 "0.043 "0.040#20!
66As 0.124 0.006 "0.291 "0.070 0.421 0.066 "0.295 "0.053 "0.050#20!
70Br 0.077 0.009 "0.295 "0.083 0.401 0.032 "0.301 "0.063 "0.060#20!
74Rb 0.155 0.009 "0.261 0.006 0.353 0.106 "0.306 "0.046 "0.065#20!

I. S. TOWNER AND J. C. HARDY PHYSICAL REVIEW C 66, 035501 #2002!
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Splitting the γW-box into Universal and Nuclear Parts 
Hardy, Towner 2002 reviewδNS =

α
π [CNS + Cquenched

B ] ≈ 0.22 % [CNS + Cquenched
B ]
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C-Y Seng, MG, M J Ramsey-Musolf, arXiv: 1812.03352

δNS =
2α

πNM ∫
1 GeV2

0
dQ2 ∫

νπ

νthr

dν
ν [ ν + 2q

(ν + q)2 (F(0) Nucl.
3 − F(0), B

3 ) +
2⟨E⟩

3
ν + 3q

(ν + q)3
F(−) Nucl.

3 ]

MG, arXiv: 1812.04229
 from DR with energy dependence averaged over the spectrumδNS

Compare the effect on the average Ft value:

ℱt = 3072.1(7)s δℱt = − (3.5±1.0)s + (1.6±0.5)s
δℱt = − (1.8 ± 0.4)s + (0 ± 0)sHT value 2018:

New estimate:
Old estimate:

Two 2  corrections that cancel each other; 
The cancellation is delicate: the two terms are highly correlated  

Larger E-dep. term will correspond to a smaller negative E-indep. term and vv. 

Conservative uncertainty estimate: 100%

σ

ℱt = (3072 ± 2)s

Emphasize: until a complete dispersive  calculation exists this is only a hint!δNS

: nuclear structure leaks from inner into outer RC (“ -box inside-out”)Λnuc ∼ Q ∼ 10 MeV γW



Status of δC



Isospin	symmetry	breaking	in	superallowed	 -decayβ

a𝛼† creates a neutron in the state 𝛼 
aβ annihilates a proton in the state β

Fermi	matrix	element:

SUPERALLOWED 0+ → 0+ NUCLEAR . . . PHYSICAL REVIEW C 91, 025501 (2015)

TABLE X. Corrections δ′
R , δNS, and δC that are applied to

experimental f t values to obtain F t values.

Parent δ′
R δNS δC1 δC2 δC

nucleus (%) (%) (%) (%) (%)

Tz = − 1
10C 1.679 − 0.345(35) 0.010(10) 0.165(15) 0.175(18)
14O 1.543 − 0.245(50) 0.055(20) 0.275(15) 0.330(25)
18Ne 1.506 − 0.290(35) 0.155(30) 0.405(25) 0.560(39)
22Mg 1.466 − 0.225(20) 0.010(10) 0.370(20) 0.380(22)
26Si 1.439 − 0.215(20) 0.030(10) 0.405(25) 0.435(27)
30S 1.423 − 0.185(15) 0.155(20) 0.700(20) 0.855(28)
34Ar 1.412 − 0.180(15) 0.030(10) 0.665(55) 0.695(56)
38Ca 1.414 − 0.175(15) 0.020(10) 0.745(70) 0.765(71)
42Ti 1.427 − 0.235(20) 0.105(20) 0.835(75) 0.940(78)
Tz = 0
26mAl 1.478 0.005(20) 0.030(10) 0.280(15) 0.310(18)
34Cl 1.443 − 0.085(15) 0.100(10) 0.550(45) 0.650(46)
38mK 1.440 − 0.100(15) 0.105(20) 0.565(50) 0.670(54)
42Sc 1.453 0.035(20) 0.020(10) 0.645(55) 0.665(56)
46V 1.445 − 0.035(10) 0.075(30) 0.545(55) 0.620(63)
50Mn 1.444 − 0.040(10) 0.035(20) 0.610(50) 0.645(54)
54Co 1.443 − 0.035(10) 0.050(30) 0.720(60) 0.770(67)
62Ga 1.459 − 0.045(20) 0.275(55) 1.20(20) 1.48(21)
66As 1.468 − 0.060(20) 0.195(45) 1.35(40) 1.55(40)
70Br 1.486 − 0.085(25) 0.445(40) 1.25(25) 1.70(25)
74Rb 1.499 − 0.075(30) 0.115(60) 1.50(26) 1.62(27)

cautious. Furthermore, because the uncertainty is associated
with the Z2α3 term, it is expected to be a smooth function
of Z2 and thus to behave systematically since any shift in the
value of δ′

R must affect all F t values in the same direction.
We then proceed as follows: We evaluate the individual

transition F t values without including any uncertainties
associated with δ′

R and obtain an average F t . Then we shift all
the individual δ′

R terms up and down by one-third of the Z2α3

contribution, recalculate the F t values and determine F t for
both. The shifts in the value of the latter—±0.36 s for the data
in Table IX—becomes the systematic uncertainty assigned to
F t to account for the uncertainty in δ′

R. Note that our choice to
take one-third of the Z2α3 term is rather arbitrary, but has the
benefit that it is still conservative and at the same time results
in the uncertainty in δ′

R having an impact on the overall result
that is comparable to its impact in our previous survey [6].

We turn now to the third radiative term δNS, which arises
from an evaluation of the low-energy part of the γW -box
graph for an axial-vector weak interaction. If it is assumed
that the γN and WN vertices are both with the same nucleon,
N , then the evaluated box graph becomes proportional to
the Fermi β-decay operator, yielding a universal correction
already included in %V

R.
If instead the γ and W interactions in the γW -box

graph for an axial-vector current are with different nucleons
in the nucleus, then the evaluation involves two-nucleon
operators, which necessitates a nuclear-structure calculation.
This component of the radiative correction we denote by δNS
and list its values in column 3 of Table X. The values and their
uncertainties have been taken from Table VI in Ref. [192].

For this correction term, a number of model calculations were
carried out for each nucleus [192] and the uncertainties listed
were chosen to encompass the spread in the results from these
calculations. Therefore the uncertainty is nucleus-specific and,
as such, can be treated as statistical and not systematic. We
thus combine it in quadrature with the experimental errors in
determining the F t-value uncertainties.

2. Isospin-symmetry-breaking correction

In this section we describe only the set of isospin-
symmetry-breaking corrections, δC , that we have used in
deriving the corrected F t values given in Table IX. A
discussion of other alternative calculations of δC—and our
reasons for rejecting them—is postponed to Sec. IV. The set we
have selected follows from a semiphenomenological approach
based on the shell model combined with Woods-Saxon radial
functions. This model, which we designate as SM-WS, has
been described in detail by us in Ref. [192], where also
the results for δC are tabulated. We describe the model only
briefly here, while making two minor updates to our previous
results.

The calculation is done in two parts, which is made possible
by our dividing δC into two terms:

δC = δC1 + δC2. (4)

The idea is that δC1 follows from a tractable shell-model
calculation that does not include significant nodal mixing,
while δC2 corrects for the nodal mixing that would be present
if the shell-model space were much larger.

For δC1, a modest shell-model space (usually one major
oscillator shell) is employed, in which Coulomb and other
charge-dependent terms are added to the charge-independent
effective Hamiltonian customarily used for the shell model.
These charge-dependent additional terms are separately ad-
justed for each superallowed β transition to reproduce the
b and c coefficients of the isobaric multiplet mass equation
(IMME) for the triplet of T = 1, 0+ states that includes the
parent and daughter states of the transition.

Since the Coulomb force is long range, its influence in
configuration space extends much further than the single
major oscillator shell included in the calculation of δC1. To
incorporate the effects of multishell mixing, we note first that
its principal impact is to change the structure of the radial wave
function by introducing mixing with radial functions that have
more nodes. Since this mixing primarily affects protons, it
results in proton radial functions that differ from the neutron
ones so, when the overlap is computed, its departure from unity
determines the value of δC2. The radial functions themselves
are derived from a Woods-Saxon potential. Again there is
a case-by-case adjustment in the Woods-Saxon potentials
to ensure that the different measured proton and neutron
separation energies in the β-decay parents and daughters are
correctly reproduced.

The SM-WS calculations of Towner and Hardy [192] must
clearly be classified as semiphenomenological. A number of
transition-specific nuclear properties have been fitted in their
determination of δC. In contrast, most of the alternative models
discussed in Sec. IV are first-principles theory calculations.
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Towner and Hardy [6] use a second quantization formula-
tion to write the Fermi matrix element as

MF =
∑

α,β

⟨f |a†
αaβ |i⟩⟨α|τ+|β⟩, (3)

where a†
α creates a neutron in state α and aβ annihilates a

proton in state β. Thus, the label α is used to denote neutron
creation and annihilation operators, while β is used for those
of the proton. This notation is different from the standard
notation [11], in which bα is used to denote proton annihilation
operators.

The single-particle matrix element ⟨α|τ+|β⟩ is assumed to
be given by the expression

⟨α|τ+|β⟩ = δα,β

∫ ∞

0
Rn

α(r)Rp
β (r)r2dr ≡δα,βrα, (4)

where Rn
α(r) and R

p
β (r) are the neutron and proton radial

wave functions, respectively. The problem is that the correct
superallowed β decay operator in the Standard Model is the
plus component of the isospin operator. The operator in Eq. (3)
is not the isospin operator, because the states |α⟩ and |β⟩ are
not the same. Instead, τ+ of Eq. (3) is the plus component of
the W-spin operator of MacDonald [12], which is reviewed in
Ref. [11]. In addition, Eq. (4) assumes that the radial quantum
numbers of the states α and β must be the same. This need not
be so. As a result, the Standard Model isospin commutation
relations maintained in the W-spin formalism are lost.

To obtain the commutation relations, we observe that
Eqs. (3) and(4) correspond to the second-quantized isospin
operators

τ+ =
∑

α,β

δα,βrαa†
αaβ , (5)

τ− = τ
†
+ =

∑

α,β

δα,βr∗
αa

†
βaα, (6)

so that

[τ+, τ−] =
∑

α

|rα|2a†
αaα −

∑

β

|rβ |2a†
βaβ ̸= τ0. (7)

The Standard Model isospin commutation relations are vio-
lated if one uses the isospin operators of TH.

This formal problem motivates us to reevaluate the treat-
ment of ISB corrections and to study whether there are
potential corrections to the extraction of Vud. To this end,
we review the details of the TH procedure for δC . Although
Eqs. (3) and(4) are not formally correct, they do account for the
important correction: the effects of the Coulomb interaction on
the radial wave functions.

III. TH TREATMENT OF δC

Towner and Hardy [6] proceed by introducing into Eq. (3)
a complete set of states for the (A −1)-particle system, |π⟩,
which leads to

MF =
∑

α,π

⟨f |a†
α|π⟩⟨π |aα|i⟩rπ

α . (8)

The TH model thus allows for a dependence of the radial
integrals on the intermediate state π .

If isospin were an exact symmetry, the matrix elements
of the creation and annihilation operators would be related
by hermiticity, ⟨π |aα|i⟩ = ⟨f |a†

α|π⟩∗, and all radial integrals
would be unity. Hence the symmetry-limit matrix element in
this model is given by

M0 =
∑

α,π

|⟨f |a†
α|π⟩|2. (9)

Towner and Hardy divide the contributions from ISB into two
terms. First, the hermiticity of the matrix elements of aα and
a†

α will be broken, and second, the radial integrals will differ
from unity. Assuming both effects are small, TH calculate the
resulting ISB corrections as [6]

δC = δC1 + δC2, (10)

where in evaluating δC1 all radial integrals are set to unity
but the matrix elements are not assumed to be related by
hermiticity, and in evaluating δC2 it is assumed that ⟨π |aα|i⟩ =
⟨f |a†

α|π⟩∗ but rπ
α ̸= 1. We will study whether this is a

useful representation of δC . However, we emphasize that the
separation into δC1 and δC2 is a model-dependent concept,
inspired by the shell model [4]. For example, this division
is clearly model dependent when MF is obtained from ab
initio calculations of the initial and final states, |i⟩ and |f ⟩.
In addition, we demonstrate below that this is not possible
rigorously for schematic models.

A. Radial overlap correction δC2

Towner and Hardy find that the radial correction, δC2, is the
larger of their two model corrections [4– 6]. The Fermi matrix
element relevant for δC2 is given by

MF =
∑

α,π

|⟨f |a†
α|π⟩|2rπ

α ,

= M0

(

1 − 1
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α

)

, (11)

where &π
α = (1 −rπ

α ) is a radial-mismatch factor. With the
definition of the ISB correction factor in Eq. (2), TH approxi-
mate δC2 by

δC2 ≈ 2
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α . (12)

Consequently, large contributions to δC2 come with a large
spectroscopic amplitude and a significant radial mismatch.

In evaluating δC2 of Eq. (12), TH use guidance from
experiment. Their results are based on shell-model calculations
of the spectroscopic amplitudes, but limit the sums over
orbitals α and intermediate states π to those for which large
spectroscopic factors have been observed in pick-up reactions.
For 46V, TH [6] use this strategy to include two sd core orbitals,
s1/2 and d3/2, in addition to the f7/2 orbital of their earlier
calculations. Their new result for δC2 is 0.58% (see Table I in
Ref. [6]), which is almost a factor two larger than the 2002
value [4].

035501-2

G. A. MILLER AND A. SCHWENK PHYSICAL REVIEW C 78, 035501 (2008)

Towner and Hardy [6] use a second quantization formula-
tion to write the Fermi matrix element as

MF =
∑

α,β

⟨f |a†
αaβ |i⟩⟨α|τ+|β⟩, (3)

where a†
α creates a neutron in state α and aβ annihilates a

proton in state β. Thus, the label α is used to denote neutron
creation and annihilation operators, while β is used for those
of the proton. This notation is different from the standard
notation [11], in which bα is used to denote proton annihilation
operators.

The single-particle matrix element ⟨α|τ+|β⟩ is assumed to
be given by the expression

⟨α|τ+|β⟩ = δα,β

∫ ∞

0
Rn

α(r)Rp
β (r)r2dr ≡δα,βrα, (4)

where Rn
α(r) and R

p
β (r) are the neutron and proton radial

wave functions, respectively. The problem is that the correct
superallowed β decay operator in the Standard Model is the
plus component of the isospin operator. The operator in Eq. (3)
is not the isospin operator, because the states |α⟩ and |β⟩ are
not the same. Instead, τ+ of Eq. (3) is the plus component of
the W-spin operator of MacDonald [12], which is reviewed in
Ref. [11]. In addition, Eq. (4) assumes that the radial quantum
numbers of the states α and β must be the same. This need not
be so. As a result, the Standard Model isospin commutation
relations maintained in the W-spin formalism are lost.

To obtain the commutation relations, we observe that
Eqs. (3) and(4) correspond to the second-quantized isospin
operators

τ+ =
∑

α,β

δα,βrαa†
αaβ , (5)

τ− = τ
†
+ =

∑

α,β

δα,βr∗
αa

†
βaα, (6)

so that

[τ+, τ−] =
∑

α

|rα|2a†
αaα −

∑

β

|rβ |2a†
βaβ ̸= τ0. (7)

The Standard Model isospin commutation relations are vio-
lated if one uses the isospin operators of TH.

This formal problem motivates us to reevaluate the treat-
ment of ISB corrections and to study whether there are
potential corrections to the extraction of Vud. To this end,
we review the details of the TH procedure for δC . Although
Eqs. (3) and(4) are not formally correct, they do account for the
important correction: the effects of the Coulomb interaction on
the radial wave functions.

III. TH TREATMENT OF δC

Towner and Hardy [6] proceed by introducing into Eq. (3)
a complete set of states for the (A −1)-particle system, |π⟩,
which leads to

MF =
∑

α,π

⟨f |a†
α|π⟩⟨π |aα|i⟩rπ

α . (8)

The TH model thus allows for a dependence of the radial
integrals on the intermediate state π .

If isospin were an exact symmetry, the matrix elements
of the creation and annihilation operators would be related
by hermiticity, ⟨π |aα|i⟩ = ⟨f |a†

α|π⟩∗, and all radial integrals
would be unity. Hence the symmetry-limit matrix element in
this model is given by

M0 =
∑

α,π

|⟨f |a†
α|π⟩|2. (9)

Towner and Hardy divide the contributions from ISB into two
terms. First, the hermiticity of the matrix elements of aα and
a†

α will be broken, and second, the radial integrals will differ
from unity. Assuming both effects are small, TH calculate the
resulting ISB corrections as [6]

δC = δC1 + δC2, (10)

where in evaluating δC1 all radial integrals are set to unity
but the matrix elements are not assumed to be related by
hermiticity, and in evaluating δC2 it is assumed that ⟨π |aα|i⟩ =
⟨f |a†

α|π⟩∗ but rπ
α ̸= 1. We will study whether this is a

useful representation of δC . However, we emphasize that the
separation into δC1 and δC2 is a model-dependent concept,
inspired by the shell model [4]. For example, this division
is clearly model dependent when MF is obtained from ab
initio calculations of the initial and final states, |i⟩ and |f ⟩.
In addition, we demonstrate below that this is not possible
rigorously for schematic models.

A. Radial overlap correction δC2

Towner and Hardy find that the radial correction, δC2, is the
larger of their two model corrections [4– 6]. The Fermi matrix
element relevant for δC2 is given by

MF =
∑

α,π

|⟨f |a†
α|π⟩|2rπ

α ,

= M0

(

1 − 1
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α

)

, (11)

where &π
α = (1 −rπ

α ) is a radial-mismatch factor. With the
definition of the ISB correction factor in Eq. (2), TH approxi-
mate δC2 by

δC2 ≈ 2
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α . (12)

Consequently, large contributions to δC2 come with a large
spectroscopic amplitude and a significant radial mismatch.

In evaluating δC2 of Eq. (12), TH use guidance from
experiment. Their results are based on shell-model calculations
of the spectroscopic amplitudes, but limit the sums over
orbitals α and intermediate states π to those for which large
spectroscopic factors have been observed in pick-up reactions.
For 46V, TH [6] use this strategy to include two sd core orbitals,
s1/2 and d3/2, in addition to the f7/2 orbital of their earlier
calculations. Their new result for δC2 is 0.58% (see Table I in
Ref. [6]), which is almost a factor two larger than the 2002
value [4].
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Towner and Hardy [6] use a second quantization formula-
tion to write the Fermi matrix element as

MF =
∑

α,β

⟨f |a†
αaβ |i⟩⟨α|τ+|β⟩, (3)

where a†
α creates a neutron in state α and aβ annihilates a

proton in state β. Thus, the label α is used to denote neutron
creation and annihilation operators, while β is used for those
of the proton. This notation is different from the standard
notation [11], in which bα is used to denote proton annihilation
operators.

The single-particle matrix element ⟨α|τ+|β⟩ is assumed to
be given by the expression

⟨α|τ+|β⟩ = δα,β

∫ ∞

0
Rn

α(r)Rp
β (r)r2dr ≡δα,βrα, (4)

where Rn
α(r) and R

p
β (r) are the neutron and proton radial

wave functions, respectively. The problem is that the correct
superallowed β decay operator in the Standard Model is the
plus component of the isospin operator. The operator in Eq. (3)
is not the isospin operator, because the states |α⟩ and |β⟩ are
not the same. Instead, τ+ of Eq. (3) is the plus component of
the W-spin operator of MacDonald [12], which is reviewed in
Ref. [11]. In addition, Eq. (4) assumes that the radial quantum
numbers of the states α and β must be the same. This need not
be so. As a result, the Standard Model isospin commutation
relations maintained in the W-spin formalism are lost.

To obtain the commutation relations, we observe that
Eqs. (3) and(4) correspond to the second-quantized isospin
operators

τ+ =
∑

α,β

δα,βrαa†
αaβ , (5)

τ− = τ
†
+ =

∑

α,β

δα,βr∗
αa

†
βaα, (6)

so that

[τ+, τ−] =
∑

α

|rα|2a†
αaα −

∑

β

|rβ |2a†
βaβ ̸= τ0. (7)

The Standard Model isospin commutation relations are vio-
lated if one uses the isospin operators of TH.

This formal problem motivates us to reevaluate the treat-
ment of ISB corrections and to study whether there are
potential corrections to the extraction of Vud. To this end,
we review the details of the TH procedure for δC . Although
Eqs. (3) and(4) are not formally correct, they do account for the
important correction: the effects of the Coulomb interaction on
the radial wave functions.

III. TH TREATMENT OF δC

Towner and Hardy [6] proceed by introducing into Eq. (3)
a complete set of states for the (A −1)-particle system, |π⟩,
which leads to

MF =
∑

α,π

⟨f |a†
α|π⟩⟨π |aα|i⟩rπ

α . (8)

The TH model thus allows for a dependence of the radial
integrals on the intermediate state π .

If isospin were an exact symmetry, the matrix elements
of the creation and annihilation operators would be related
by hermiticity, ⟨π |aα|i⟩ = ⟨f |a†

α|π⟩∗, and all radial integrals
would be unity. Hence the symmetry-limit matrix element in
this model is given by

M0 =
∑

α,π

|⟨f |a†
α|π⟩|2. (9)

Towner and Hardy divide the contributions from ISB into two
terms. First, the hermiticity of the matrix elements of aα and
a†

α will be broken, and second, the radial integrals will differ
from unity. Assuming both effects are small, TH calculate the
resulting ISB corrections as [6]

δC = δC1 + δC2, (10)

where in evaluating δC1 all radial integrals are set to unity
but the matrix elements are not assumed to be related by
hermiticity, and in evaluating δC2 it is assumed that ⟨π |aα|i⟩ =
⟨f |a†

α|π⟩∗ but rπ
α ̸= 1. We will study whether this is a

useful representation of δC . However, we emphasize that the
separation into δC1 and δC2 is a model-dependent concept,
inspired by the shell model [4]. For example, this division
is clearly model dependent when MF is obtained from ab
initio calculations of the initial and final states, |i⟩ and |f ⟩.
In addition, we demonstrate below that this is not possible
rigorously for schematic models.

A. Radial overlap correction δC2

Towner and Hardy find that the radial correction, δC2, is the
larger of their two model corrections [4– 6]. The Fermi matrix
element relevant for δC2 is given by

MF =
∑

α,π

|⟨f |a†
α|π⟩|2rπ

α ,

= M0

(

1 − 1
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α

)

, (11)

where &π
α = (1 −rπ

α ) is a radial-mismatch factor. With the
definition of the ISB correction factor in Eq. (2), TH approxi-
mate δC2 by

δC2 ≈ 2
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α . (12)

Consequently, large contributions to δC2 come with a large
spectroscopic amplitude and a significant radial mismatch.

In evaluating δC2 of Eq. (12), TH use guidance from
experiment. Their results are based on shell-model calculations
of the spectroscopic amplitudes, but limit the sums over
orbitals α and intermediate states π to those for which large
spectroscopic factors have been observed in pick-up reactions.
For 46V, TH [6] use this strategy to include two sd core orbitals,
s1/2 and d3/2, in addition to the f7/2 orbital of their earlier
calculations. Their new result for δC2 is 0.58% (see Table I in
Ref. [6]), which is almost a factor two larger than the 2002
value [4].
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Towner and Hardy [6] use a second quantization formula-
tion to write the Fermi matrix element as

MF =
∑

α,β

⟨f |a†
αaβ |i⟩⟨α|τ+|β⟩, (3)

where a†
α creates a neutron in state α and aβ annihilates a

proton in state β. Thus, the label α is used to denote neutron
creation and annihilation operators, while β is used for those
of the proton. This notation is different from the standard
notation [11], in which bα is used to denote proton annihilation
operators.

The single-particle matrix element ⟨α|τ+|β⟩ is assumed to
be given by the expression

⟨α|τ+|β⟩ = δα,β

∫ ∞

0
Rn

α(r)Rp
β (r)r2dr ≡δα,βrα, (4)

where Rn
α(r) and R

p
β (r) are the neutron and proton radial

wave functions, respectively. The problem is that the correct
superallowed β decay operator in the Standard Model is the
plus component of the isospin operator. The operator in Eq. (3)
is not the isospin operator, because the states |α⟩ and |β⟩ are
not the same. Instead, τ+ of Eq. (3) is the plus component of
the W-spin operator of MacDonald [12], which is reviewed in
Ref. [11]. In addition, Eq. (4) assumes that the radial quantum
numbers of the states α and β must be the same. This need not
be so. As a result, the Standard Model isospin commutation
relations maintained in the W-spin formalism are lost.

To obtain the commutation relations, we observe that
Eqs. (3) and(4) correspond to the second-quantized isospin
operators

τ+ =
∑

α,β

δα,βrαa†
αaβ , (5)

τ− = τ
†
+ =

∑

α,β

δα,βr∗
αa

†
βaα, (6)

so that

[τ+, τ−] =
∑

α

|rα|2a†
αaα −

∑

β

|rβ |2a†
βaβ ̸= τ0. (7)

The Standard Model isospin commutation relations are vio-
lated if one uses the isospin operators of TH.

This formal problem motivates us to reevaluate the treat-
ment of ISB corrections and to study whether there are
potential corrections to the extraction of Vud. To this end,
we review the details of the TH procedure for δC . Although
Eqs. (3) and(4) are not formally correct, they do account for the
important correction: the effects of the Coulomb interaction on
the radial wave functions.

III. TH TREATMENT OF δC

Towner and Hardy [6] proceed by introducing into Eq. (3)
a complete set of states for the (A −1)-particle system, |π⟩,
which leads to

MF =
∑

α,π

⟨f |a†
α|π⟩⟨π |aα|i⟩rπ

α . (8)

The TH model thus allows for a dependence of the radial
integrals on the intermediate state π .

If isospin were an exact symmetry, the matrix elements
of the creation and annihilation operators would be related
by hermiticity, ⟨π |aα|i⟩ = ⟨f |a†

α|π⟩∗, and all radial integrals
would be unity. Hence the symmetry-limit matrix element in
this model is given by

M0 =
∑

α,π

|⟨f |a†
α|π⟩|2. (9)

Towner and Hardy divide the contributions from ISB into two
terms. First, the hermiticity of the matrix elements of aα and
a†

α will be broken, and second, the radial integrals will differ
from unity. Assuming both effects are small, TH calculate the
resulting ISB corrections as [6]

δC = δC1 + δC2, (10)

where in evaluating δC1 all radial integrals are set to unity
but the matrix elements are not assumed to be related by
hermiticity, and in evaluating δC2 it is assumed that ⟨π |aα|i⟩ =
⟨f |a†

α|π⟩∗ but rπ
α ̸= 1. We will study whether this is a

useful representation of δC . However, we emphasize that the
separation into δC1 and δC2 is a model-dependent concept,
inspired by the shell model [4]. For example, this division
is clearly model dependent when MF is obtained from ab
initio calculations of the initial and final states, |i⟩ and |f ⟩.
In addition, we demonstrate below that this is not possible
rigorously for schematic models.

A. Radial overlap correction δC2

Towner and Hardy find that the radial correction, δC2, is the
larger of their two model corrections [4– 6]. The Fermi matrix
element relevant for δC2 is given by

MF =
∑

α,π

|⟨f |a†
α|π⟩|2rπ

α ,

= M0

(

1 − 1
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α

)

, (11)

where &π
α = (1 −rπ

α ) is a radial-mismatch factor. With the
definition of the ISB correction factor in Eq. (2), TH approxi-
mate δC2 by

δC2 ≈ 2
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α . (12)

Consequently, large contributions to δC2 come with a large
spectroscopic amplitude and a significant radial mismatch.

In evaluating δC2 of Eq. (12), TH use guidance from
experiment. Their results are based on shell-model calculations
of the spectroscopic amplitudes, but limit the sums over
orbitals α and intermediate states π to those for which large
spectroscopic factors have been observed in pick-up reactions.
For 46V, TH [6] use this strategy to include two sd core orbitals,
s1/2 and d3/2, in addition to the f7/2 orbital of their earlier
calculations. Their new result for δC2 is 0.58% (see Table I in
Ref. [6]), which is almost a factor two larger than the 2002
value [4].

035501-2

G. A. MILLER AND A. SCHWENK PHYSICAL REVIEW C 78, 035501 (2008)

Towner and Hardy [6] use a second quantization formula-
tion to write the Fermi matrix element as

MF =
∑

α,β

⟨f |a†
αaβ |i⟩⟨α|τ+|β⟩, (3)

where a†
α creates a neutron in state α and aβ annihilates a

proton in state β. Thus, the label α is used to denote neutron
creation and annihilation operators, while β is used for those
of the proton. This notation is different from the standard
notation [11], in which bα is used to denote proton annihilation
operators.

The single-particle matrix element ⟨α|τ+|β⟩ is assumed to
be given by the expression

⟨α|τ+|β⟩ = δα,β

∫ ∞

0
Rn

α(r)Rp
β (r)r2dr ≡δα,βrα, (4)

where Rn
α(r) and R

p
β (r) are the neutron and proton radial

wave functions, respectively. The problem is that the correct
superallowed β decay operator in the Standard Model is the
plus component of the isospin operator. The operator in Eq. (3)
is not the isospin operator, because the states |α⟩ and |β⟩ are
not the same. Instead, τ+ of Eq. (3) is the plus component of
the W-spin operator of MacDonald [12], which is reviewed in
Ref. [11]. In addition, Eq. (4) assumes that the radial quantum
numbers of the states α and β must be the same. This need not
be so. As a result, the Standard Model isospin commutation
relations maintained in the W-spin formalism are lost.

To obtain the commutation relations, we observe that
Eqs. (3) and(4) correspond to the second-quantized isospin
operators

τ+ =
∑

α,β

δα,βrαa†
αaβ , (5)

τ− = τ
†
+ =

∑

α,β

δα,βr∗
αa

†
βaα, (6)

so that

[τ+, τ−] =
∑

α

|rα|2a†
αaα −

∑

β

|rβ |2a†
βaβ ̸= τ0. (7)

The Standard Model isospin commutation relations are vio-
lated if one uses the isospin operators of TH.

This formal problem motivates us to reevaluate the treat-
ment of ISB corrections and to study whether there are
potential corrections to the extraction of Vud. To this end,
we review the details of the TH procedure for δC . Although
Eqs. (3) and(4) are not formally correct, they do account for the
important correction: the effects of the Coulomb interaction on
the radial wave functions.

III. TH TREATMENT OF δC

Towner and Hardy [6] proceed by introducing into Eq. (3)
a complete set of states for the (A −1)-particle system, |π⟩,
which leads to

MF =
∑

α,π

⟨f |a†
α|π⟩⟨π |aα|i⟩rπ

α . (8)

The TH model thus allows for a dependence of the radial
integrals on the intermediate state π .

If isospin were an exact symmetry, the matrix elements
of the creation and annihilation operators would be related
by hermiticity, ⟨π |aα|i⟩ = ⟨f |a†

α|π⟩∗, and all radial integrals
would be unity. Hence the symmetry-limit matrix element in
this model is given by

M0 =
∑

α,π

|⟨f |a†
α|π⟩|2. (9)

Towner and Hardy divide the contributions from ISB into two
terms. First, the hermiticity of the matrix elements of aα and
a†

α will be broken, and second, the radial integrals will differ
from unity. Assuming both effects are small, TH calculate the
resulting ISB corrections as [6]

δC = δC1 + δC2, (10)

where in evaluating δC1 all radial integrals are set to unity
but the matrix elements are not assumed to be related by
hermiticity, and in evaluating δC2 it is assumed that ⟨π |aα|i⟩ =
⟨f |a†

α|π⟩∗ but rπ
α ̸= 1. We will study whether this is a

useful representation of δC . However, we emphasize that the
separation into δC1 and δC2 is a model-dependent concept,
inspired by the shell model [4]. For example, this division
is clearly model dependent when MF is obtained from ab
initio calculations of the initial and final states, |i⟩ and |f ⟩.
In addition, we demonstrate below that this is not possible
rigorously for schematic models.

A. Radial overlap correction δC2

Towner and Hardy find that the radial correction, δC2, is the
larger of their two model corrections [4– 6]. The Fermi matrix
element relevant for δC2 is given by

MF =
∑

α,π

|⟨f |a†
α|π⟩|2rπ

α ,

= M0

(

1 − 1
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α

)

, (11)

where &π
α = (1 −rπ

α ) is a radial-mismatch factor. With the
definition of the ISB correction factor in Eq. (2), TH approxi-
mate δC2 by

δC2 ≈ 2
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α . (12)

Consequently, large contributions to δC2 come with a large
spectroscopic amplitude and a significant radial mismatch.

In evaluating δC2 of Eq. (12), TH use guidance from
experiment. Their results are based on shell-model calculations
of the spectroscopic amplitudes, but limit the sums over
orbitals α and intermediate states π to those for which large
spectroscopic factors have been observed in pick-up reactions.
For 46V, TH [6] use this strategy to include two sd core orbitals,
s1/2 and d3/2, in addition to the f7/2 orbital of their earlier
calculations. Their new result for δC2 is 0.58% (see Table I in
Ref. [6]), which is almost a factor two larger than the 2002
value [4].
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Towner and Hardy [6] use a second quantization formula-
tion to write the Fermi matrix element as

MF =
∑

α,β

⟨f |a†
αaβ |i⟩⟨α|τ+|β⟩, (3)

where a†
α creates a neutron in state α and aβ annihilates a

proton in state β. Thus, the label α is used to denote neutron
creation and annihilation operators, while β is used for those
of the proton. This notation is different from the standard
notation [11], in which bα is used to denote proton annihilation
operators.

The single-particle matrix element ⟨α|τ+|β⟩ is assumed to
be given by the expression

⟨α|τ+|β⟩ = δα,β

∫ ∞

0
Rn

α(r)Rp
β (r)r2dr ≡δα,βrα, (4)

where Rn
α(r) and R

p
β (r) are the neutron and proton radial

wave functions, respectively. The problem is that the correct
superallowed β decay operator in the Standard Model is the
plus component of the isospin operator. The operator in Eq. (3)
is not the isospin operator, because the states |α⟩ and |β⟩ are
not the same. Instead, τ+ of Eq. (3) is the plus component of
the W-spin operator of MacDonald [12], which is reviewed in
Ref. [11]. In addition, Eq. (4) assumes that the radial quantum
numbers of the states α and β must be the same. This need not
be so. As a result, the Standard Model isospin commutation
relations maintained in the W-spin formalism are lost.

To obtain the commutation relations, we observe that
Eqs. (3) and(4) correspond to the second-quantized isospin
operators

τ+ =
∑

α,β

δα,βrαa†
αaβ , (5)

τ− = τ
†
+ =

∑

α,β

δα,βr∗
αa

†
βaα, (6)

so that

[τ+, τ−] =
∑

α

|rα|2a†
αaα −

∑

β

|rβ |2a†
βaβ ̸= τ0. (7)

The Standard Model isospin commutation relations are vio-
lated if one uses the isospin operators of TH.

This formal problem motivates us to reevaluate the treat-
ment of ISB corrections and to study whether there are
potential corrections to the extraction of Vud. To this end,
we review the details of the TH procedure for δC . Although
Eqs. (3) and(4) are not formally correct, they do account for the
important correction: the effects of the Coulomb interaction on
the radial wave functions.

III. TH TREATMENT OF δC

Towner and Hardy [6] proceed by introducing into Eq. (3)
a complete set of states for the (A −1)-particle system, |π⟩,
which leads to

MF =
∑

α,π

⟨f |a†
α|π⟩⟨π |aα|i⟩rπ

α . (8)

The TH model thus allows for a dependence of the radial
integrals on the intermediate state π .

If isospin were an exact symmetry, the matrix elements
of the creation and annihilation operators would be related
by hermiticity, ⟨π |aα|i⟩ = ⟨f |a†

α|π⟩∗, and all radial integrals
would be unity. Hence the symmetry-limit matrix element in
this model is given by

M0 =
∑

α,π

|⟨f |a†
α|π⟩|2. (9)

Towner and Hardy divide the contributions from ISB into two
terms. First, the hermiticity of the matrix elements of aα and
a†

α will be broken, and second, the radial integrals will differ
from unity. Assuming both effects are small, TH calculate the
resulting ISB corrections as [6]

δC = δC1 + δC2, (10)

where in evaluating δC1 all radial integrals are set to unity
but the matrix elements are not assumed to be related by
hermiticity, and in evaluating δC2 it is assumed that ⟨π |aα|i⟩ =
⟨f |a†

α|π⟩∗ but rπ
α ̸= 1. We will study whether this is a

useful representation of δC . However, we emphasize that the
separation into δC1 and δC2 is a model-dependent concept,
inspired by the shell model [4]. For example, this division
is clearly model dependent when MF is obtained from ab
initio calculations of the initial and final states, |i⟩ and |f ⟩.
In addition, we demonstrate below that this is not possible
rigorously for schematic models.

A. Radial overlap correction δC2

Towner and Hardy find that the radial correction, δC2, is the
larger of their two model corrections [4– 6]. The Fermi matrix
element relevant for δC2 is given by

MF =
∑

α,π

|⟨f |a†
α|π⟩|2rπ

α ,

= M0

(

1 − 1
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α

)

, (11)

where &π
α = (1 −rπ

α ) is a radial-mismatch factor. With the
definition of the ISB correction factor in Eq. (2), TH approxi-
mate δC2 by

δC2 ≈ 2
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α . (12)

Consequently, large contributions to δC2 come with a large
spectroscopic amplitude and a significant radial mismatch.

In evaluating δC2 of Eq. (12), TH use guidance from
experiment. Their results are based on shell-model calculations
of the spectroscopic amplitudes, but limit the sums over
orbitals α and intermediate states π to those for which large
spectroscopic factors have been observed in pick-up reactions.
For 46V, TH [6] use this strategy to include two sd core orbitals,
s1/2 and d3/2, in addition to the f7/2 orbital of their earlier
calculations. Their new result for δC2 is 0.58% (see Table I in
Ref. [6]), which is almost a factor two larger than the 2002
value [4].
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Cabibbo-Kobayashi-Maskawa matrix element from superallowed 0+ → 0+ nuclear β decay. We show that
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I. INTRODUCTION

Superallowed Fermi β decay provides the most stringent
test of the conserved-vector-current (CVC) hypothesis, the
most precise value for the up-down Cabibbo-Kobayashi-
Maskawa (CKM) matrix element Vud, and the best limit on the
presence of scalar interactions. With the confirmation of CVC,
Vud can be extracted with great precision to test the Standard
Model [1– 3]. For this, one needs to evaluate ∼1% theoretical
corrections that arise because of nucleus-dependent isospin-
symmetry-breaking (ISB) effects between the parent and
daughter states and because of radiative effects [4,5]. These
corrections are small, but significant, and their associated
theoretical errors at present dominate the uncertainty of Vud
because of the very high precision reached experimentally [6].

In the 2005 survey of Hardy and Towner [1], the results for
the set of superallowed 0+ → 0+ transitions were statistically
consistent, after including these theoretical corrections. How-
ever, Penning-trap measurements of the transition energy for
46V [7,8] moved this case to more than two standard deviations
away from the 2005 survey. This lead Towner and Hardy
(TH) [6] to reexamine their treatment of ISB corrections and
to include the contribution from core orbitals. The latter were
found to be especially important for 46V and this anomaly
disappeared.

In this article, we study the formalism to include ISB cor-
rections and contrast the TH treatment to exact results. Before
proceeding, we review the necessary theoretical background,
following the discussion in TH [6].

Superallowed 0+ → 0+ Fermi β decay depends only on
the vector part of weak interactions, and with CVC the decay
transition “f t value” should be independent of the nucleus:

f t = 2π3h̄7 ln 2
|MF |2G2

V m5
ec

4
= const., (1)

where GV is the vector coupling constant and MF is the
Fermi matrix element. CVC depends on the assumption of
isospin symmetry, which is not exact in nuclei, but broken
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by electromagnetic and quark mass effects. As a result, MF

is reduced from its symmetry value of M0 =
√

2 for T = 1
parent and daughter states. Following TH, we introduce the
ISB corrections δC to the Fermi matrix element by

|MF |2 = |M0|2(1 − δC). (2)

In addition, there are radiative corrections to Eq. (1), but
we focus on δC here. These isospin corrections are ∼1%,
but must be calculated with a theoretical uncertainty of 10%
to guarantee a desired accuracy of 0.1%. This presents a
challenge for nuclear theory.

Hardy and Towner have shown [1,6] that the calculated
corrections eliminate much of the considerable scatter present
in the uncorrected ft values, and the statistical consistency
among the corrected values is evidence that the corrections
have been reasonably computed. However, the importance of
precisely testing the Standard Model stimulates us to undertake
a reevaluation. With this, we wish to start and stimulate further
efforts to systematically improve ISB corrections, based on an
accurate understanding of ISB in nuclear forces [9,10].

This article is organized as follows. In Sec. II, we show that
TH do not use the isospin operator to calculate δC (as mandated
by the Standard Model). To examine potential consequences
of this, we review the TH treatment in Sec. III. A complete
formalism is presented in Sec. IV, where we show that there
are no first-order ISB corrections to the relevant nuclear matrix
elements, which is also true for the work of TH. In Sec. V,
we compare the TH treatment to exact model results of
increasing complexity, which can guide future improvements.
We conclude in Sec. VI.

II. TOWNER AND HARDY APPROACH TO ISB
CORRECTIONS

In nuclei, the matrix elements of weak vector interactions
are not modified by nuclear forces, except for corrections due
to ISB effects. Therefore, one has to evaluate the contributions
from electromagnetic and charge-dependent strong interac-
tions to the Fermi matrix element MF = ⟨f |τ+|i⟩ between the
initial and final states for superallowed β decay, |i⟩ and |f ⟩,
respectively. Here τ+ is the isospin raising operator.

0556-2813/2008/78(3)/035501(7) 035501-1 ©2008 The American Physical Society

ISB

23



ISB	in	superallowed	 -decay	and	test	of	CVCβ

SUPERALLOWED 0+ → 0+ NUCLEAR . . . PHYSICAL REVIEW C 91, 025501 (2015)

3030

ft
(s

)
3040

3060

3080

3050

3070

3090

Z of daughter

2010 30 400

3070

3080

3090

3060

t (
s)

C10

O14

Mg22

Cl34Al26m

Ar34

K38m

Sc42

V46

Mn50

Co54

Ga62 Rb74

Ca38

(a)

(b)

FIG. 2. (a) In the top panel are plotted the uncorrected experi-
mental f t values as a function of the charge on the daughter nucleus.
(b) In the bottom panel, the corresponding F t values are given; they
differ from the f t values by the inclusion of the correction terms δ′

R ,
δNS, and δC. The horizontal gray band gives one standard deviation
around the average F t value.

of χ2/ν associated with the current F t result is higher than
the corresponding value in 2008 but this undoubtedly reflects
the fact that one additional transition has been added and the
data for some of the other transitions are more precise today
than they were 6 years ago. In any case, the confidence level
for the new result remains very high: 91%.

C. Uncertainty budgets

We show the contributing factors to the individual F t-value
fractional uncertainties in two figures. The first, Fig. 3,
encompasses the nine cases with stable daughter nuclei. Their
experimental parameters have been measured with increasing
precision for many years, so we refer to these as the “traditional
nine.” The remaining eleven cases, of which five now approach
the traditional nine in precision, appear in Fig. 4. In both
figures, the first three bars in each group of five show the
contributions from experiment, while the last two correspond
to theory. Although we are now treating the contribution from
δ′
R as a systematic uncertainty that is applied to the final

average F t , nevertheless we show a bar as a rough guide

10C 14O 26mAl 34Cl 38mK 42Sc 46V 50Mn 54Co
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FIG. 3. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that con-
tributes to the final F t values for the “traditional nine” superallowed
transitions. The bars for δ′

R are only a rough guide to the effect on
each transition of this term’s systematic uncertainty. See text.

62Ga 74Rb70Br66As
0

0.2

0.4

0.3

0.1

T = 0Z

Parent nucleus

T = -1Z

Q-value

Half-life

Branching ratio

’

-

18Ne 42Ti38Ca34Ar30S26Si22Mg
0

0.2

0.4

0.3

0.1

)
%( ytniatrecnu lanoitcarF

FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final F t values for the 11 other superallowed
transitions. Where the error is cut off with a jagged line at 40 parts in
104, no useful experimental measurement has been made. The bars
for δ′

R are only a rough guide to the effect on each transition of this
term’s systematic uncertainty. See text.
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standard deviations. Is there any way the |Vud| value in Eq. (10)
could possibly be shifted to this value? It can be seen in
Eq. (8) that |Vud|2 is inversely proportional to both F t and
(1 + !V

R). For F t to account for such a shift, it would have to
decrease by six standard deviations. That is unlikely enough
but, because all 14 measured transitions agree with one another
and with CVC, all 14 would have to undergo the same shift, a
virtual impossibility. The only other possibility is a shift in the
nucleus-independent radiative correction, !V

R, which would
have to be reduced from 2.36(4)% to 2.24%. This is a change
equal to three times the stated uncertainty which, while not
impossible, is rather unlikely.

(4) f+(0), fK/fπ correct, Kℓ3, Kℓ2 correct, unitarity
not satisfied. With |Vus | determined from Kℓ3 decays and
|Vus |/|Vud| from Kℓ2 decays, each with the Nf = 2 + 1 + 1
lattice coupling constants, a value of |Vud| can be obtained from
their ratio. The result, |Vud| = 0.9670(44), has a somewhat
larger error bar than other determinations from kaon physics
because no constraint to satisfy unitarity has been imposed.
Nevertheless, the result is two of its standard deviations away
from the nuclear β-decay value for |Vud| and the unitarity
sum is likewise not satisfied, with |Vu|2 = 0.985(9) and a
deficit, !CKM = −0.015(9), of 1.8 standard deviations. For
the β-decay value of |Vud| to be shifted into agreement with
this kaon-derived value would require the nucleus-independent
radiative correction !V

R to be increased from 2.36(4)% to
3.88%, 40 times its stated uncertainty. Surely this can be ruled
out.

One must conclude that there is no definitive answer for
|Vus | as of now since the two approaches to its measurement
from kaon decay are not completely consistent with one
another. On balance, though, the result for |Vus |/|Vud| obtained
from Kℓ2 and pion decays seems the most reliable because it
shows the greatest consistency as the lattice calculations have
improved, which reinforces the idea that systematic errors are
reduced when a ratio is used. If we then accept the Nf =
2 + 1 + 1 result on line 4 of Table XIII and combine it with
our result for |Vud| from Eq. (10), we get |Vus | = 0.2248(6)
and a unitary sum of |Vu|2 = 0.999 56(49).

D. Scalar currents

1. Fundamental scalar current

The standard model prescribes the weak interaction to be
an equal mix of vector (V ) and axial-vector (A) interactions
that maximizes parity violation. Searches for physics beyond
the standard model therefore seek evidence that parity is
not maximally violated (owing to the presence of right-hand
currents) or that the interaction is not pure V − A (owing to the
presence of scalar or tensor currents). The data in this survey
allow us to contribute to the search for a scalar interaction
because, if present, it would have a measurable effect on
superallowed 0+ → 0+ β transitions.

A scalar interaction would generate an additional term [5]
to the shape-correction function, which forms part of the
integrand of the statistical rate function, f , an integral over
the β-decay phase space. The additional term takes the form
(1 + bF γ1/W ), where W is the total electron energy in electron

Z of daughter
2010 30 400

3070

3080

3090

3060

FIG. 7. Corrected F t values from Table IX plotted as a function
of the charge on the daughter nucleus, Z. The curved lines represent
the approximate loci the F t values would follow if a scalar current
existed with bF = ±0.004.

rest-mass units, and γ1 =
√

[1 − (αZ)2]. The strength of the
scalar interaction is contained in the unknown constant, bF ,
which is called the Fierz interference term [218]. Thus, the
impact of a scalar interaction on the F t values would be to
introduce a dependence on ⟨1/W ⟩, the average inverse decay
energy of each β+ transition. No longer would the F t values
be constant over the whole range of nuclei but they would
instead exhibit a smooth dependence on ⟨1/W ⟩. Since ⟨1/W ⟩
is largest for the lightest nuclei, and decreases monotonically
with increasing Z and A, the largest deviation of F t from
constancy would occur for the cases of 10C and 14O.

We have reevaluated the statistical rate function, f , for
each transition using a shape-correction function that includes
the presence of the scalar interaction via a Fierz interference
term, bF , which we treat as an adjustable parameter. We then
obtained a value of bF that minimized the χ2 in a least-squares
fit to the expression F t = constant. The result we obtained is

bF = −0.0028 ± 0.0026, (17)

a marginally larger result than the value from our last survey [6]
but with the same uncertainty. Note that the uncertainty quoted
here is one standard deviation (68% CL), as obtained from the
fit. In Fig. 7 we illustrate the sensitivity of this analysis by
plotting the measured F t values together with the loci of F t
values that would be expected if bF = ±0.004. There is no
statistically compelling evidence for bF to be nonzero.1

The result in Eq. (17) can also be expressed in terms of
the coupling constants that Jackson, Treiman, and Wyld [218]
introduced to write a general form for the weak-interaction
Hamiltonian. Since we are dealing only with Fermi superal-
lowed transitions, we can restrict ourselves to scalar and vector
couplings, for which the Hamiltonian becomes

HS+V = (ψpψn)
(
CSφeφνe

+ C ′
Sφeγ5φνe

)

+ (ψpγµψn)
[
CV φeγµ(1 + γ5)φνe

]
, (18)

in the notation and metric of Ref. [218]. We have taken the
vector current to be maximally parity violating, as indicated

1It is interesting to note that if we were to derive an averageF t value
from the data while allowing bF to vary freely, the corresponding
value for |Vud| would become 0.9745(4), a result quite consistent
with the one we quote in Eq. (10), but with an uncertainty nearly
twice as large.
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If	Ft	were	not	constant:	
Presence	of	scalar	currents	-	BSM	
Fierz	interference	term	 ∼ bFme/Ee

However:	to	achieve	this	precision	the	model	was	adjusted	locally	in	each	iso-mul>plet	

• Is	this	formalism	the	right	tool	to	assess	consistency	amongst	all	the	measurements?	
• Red	squares:	even	within	one	iso-mul>plet	( ,	 )	
discrepancies	between	central	values	may	be	larger	than	the	total	uncertainty	

• Shell	model	does	not	cover	all	the	model	space	(e.g.	con>nuum)	
• HT	method	cri>cized	for	using	incorrect	isospin	formalism	(G.	Miller,	A.	Schwenk)	
• Ab	ini>o	methods	do	not	warrant	such	high	precision

34Ar − 34Cl − 34S 38Ca − 38mK − 38Ar

Fit	to	14	transi>ons:		
Ft	constant	within	 	and	2 × 10−4 bF = − 0.0028(26)
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to the significance of the δ′
R uncertainty for each transition.

In each case, we take the height of that bar to correspond to
one-third the size of the Z2α3 term in the expression for δ′

R

(see Sec. III A 1).
From Fig. 3, it can be seen that for seven of the nine

transitions plotted there—all but those from 10C and 14O—the
contributions from their three experimental uncertainties are
substantially smaller than the corresponding contributions
from the theoretical uncertainty due to the combined nuclear-
structure-dependent corrections, (δC − δNS). The same can be
said for the transitions from 62Ga and 74Rb, which appear
among the TZ = 0 cases illustrated in Fig. 4, although for these
two cases the theoretical uncertainties are 3–10 times larger
than they are for the lighter nuclei because of nuclear-model
ambiguities.

There is good reason for these nine cases to have particu-
larly small experimental uncertainties. They are all transitions
from TZ = 0 parent nuclei, which populate even-even daugh-
ters in which there are no, or very few, 1+ states at low enough
energy to be available for competing Gamow-Teller decays.
Thus, the branching ratios for the superallowed transitions
are all >99% and have very small associated uncertainties,
the largest being for the decays of 54Co and 74Rb, which
both have a 3 × 10− 4 fractional uncertainty. In both cases,
this is because they are predicted to have Gamow-Teller
branches that are too weak to have been observed but numerous
enough that their total strength is not negligible. To account
for such competition, one must first make a sensitive search
for weak branches and then resort to an estimate of the
strength of the branches that could have been missed at the
level of experimental sensitivity achieved. Such estimates are
currently based on shell-model calculations, as first suggested
in Ref. [93], and obviously they introduce some additional
uncertainty.

The presence of numerous weak Gamow-Teller branches
becomes an increasingly significant issue for the heavier-mass
nuclei, which have increasingly large QEC values. For cases
with A ! 62, they present a major experimental challenge
if they are to be fully characterized. To date this has been
accomplished for the decays of 62Ga [36,66] and 74Rb [55] but
at considerable effort. It remains to be seen if the same level of
precision will ultimately be achievable for 66As and 70Br, the
two other cases in the bottom panel of Fig. 4, or for the even
heavier TZ = 0 parents that extend beyond 74Rb up to 98In.

The decays of 10C, 14O, and all the transitions depicted
in the top panel of Fig. 4 originate from TZ = − 1 parent
nuclei and populate odd-odd daughters in which there are low-
lying 1+ states strongly fed by Gamow-Teller decay. These
branches are of comparable intensity to the superallowed
one so they—or the superallowed branch itself—must be
measured directly with high relative precision, a very difficult
proposition. The outcome is branching-ratio uncertainties that
exceed all the other contributions to theF t-value uncertainties,
experimental or theoretical, for these cases. (Measurements of
weak competing branches in the TZ = 0 cases discussed in
the previous paragraph require high sensitivity but not high
relative precision because the total Gamow-Teller branching
is more than a factor of 100 weaker than the superallowed
branch for all of them.) Advances in experimental techniques

for measuring branching ratios have improved the situation in
recent years [94,141] and will improve it even more within the
next few years. Nevertheless, it is unlikely that these cases will
ever equal the overall level of precision already achieved for
the TZ = 0 parent decays. Their value lies instead in testing the
calculated corrections for isospin-symmetry breaking [141], as
described in Sec. IV C.

IV. ISOSPIN-SYMMETRY BREAKING

Our own isospin-symmetry-breaking calculations, which
take a semiphenomenological approach based on the shell-
model together with Woods-Saxon radial functions (denoted
SM-WS), have been discussed in Sec. III A 2. The results
obtained there for δC are listed in the last column of Table X
and are repeated for comparison purposes in the second column
of Table XI. Those are not the only calculations of δC . There
are a number of others that have appeared in the literature, of
which we outline some more recent entries here.

A. Other δC calculations

SM-HF. Ormand and Brown [199] were the first to suggest
that the calculation of the radial overlap—i.e., the δC2 com-
ponent of δC—might be better served if a mean-field Hartree-
Fock potential were used rather than the phenomenological
Woods-Saxon potential. The most recent calculation of this
type is by Hardy and Towner [6] and their results are listed

TABLE XI. Recent δC calculations (in percent units) based
on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF
(shell-model, Hartree-Fock), RPA (random phase approximation),
IVMR (isovector monopole resonance), and DFT (density functional
theory). Also given is the χ2/ν, χ 2 per degree of freedom, from the
confidence test discussed in the text.

RPA

SM-WS SM-HF PKO1 DD-ME2 PC-F1 IVMRa DFT

Tz = − 1
10C 0.175 0.225 0.082 0.150 0.109 0.147 0.650
14O 0.330 0.310 0.114 0.197 0.150 0.303
22Mg 0.380 0.260 0.301
34Ar 0.695 0.540 0.268 0.376 0.379
38Ca 0.765 0.620 0.313 0.441 0.347
Tz = 0
26mAl 0.310 0.440 0.139 0.198 0.159 0.370
34Cl 0.650 0.695 0.234 0.307 0.316
38mK 0.670 0.745 0.278 0.371 0.294 0.434
42Sc 0.665 0.640 0.333 0.448 0.345 0.770
46V 0.620 0.600 0.580
50Mn 0.645 0.610 0.550
54Co 0.770 0.685 0.319 0.393 0.339 0.638
62Ga 1.475 1.205 0.882
74Rb 1.615 1.405 1.088 1.258 0.668 1.770
χ 2/ν 1.4 6.4 4.9 3.7 6.1 4.3b

aRodin [205] also computes δC = 0.992% for both 66As and 70Br.
bThe result for 62Ga has not been included in the least-squares fit from
which this value for χ 2/ν has been obtained.
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FIG. 1. Isospin-symmetry breaking correction δC obtained from
different models: shell model with WS radial wave functions (SM-
WS) [2,4,5], shell model with HF wave functions (SM-HF) [6,7],
J (T )-projected HF theory with two different Skyrme functionals (SV-
DFT and SHZ2-DFT) [9], relativistic RPA (RHF-RPA and RH-RPA)
[10], isovector monopole resonance theory (IVMR) [11], and the
Damgaard model [12].

added to a relativistic Hartree or Hartree-Fock (HF) calculation
was used by Liang et al. [10]. In addition, Auerbach [11] uses a
model where the main isospin-symmetry-breaking effects are
attributed to the isovector monopole resonance. The last two
results are again systematically lower than the shell-model or
J (T )-projected HF values. For completeness, we show also an
earlier estimation of the correction using perturbation theory
on the basis of individual harmonic-oscillator wave functions
by Damgaard [12]. It is clear that all these calculations have a
significant spread in the obtained values of δC , thus raising the
question of credibility of the results.

The values for δC tabulated by Towner and Hardy in Ref. [1]
excellently support both the CVC hypothesis over the full range
of Z values and the top-row unitarity of the CKM matrix.
However, this agreement is not sufficient to reject the other
calculations, since these aspects of the standard model have
to be confirmed experimentally. The validity of CVC does not
constrain the absolute Ftvalue. The disagreement between
model predictions and the importance of the issue motivated
us to reexamine this correction in a consistent approach based
on the nuclear shell model.

Within the shell model, the eigenproblem is solved by con-
struction and diagonalization of the Hamiltonian matrix using
a Slater determinant spherical harmonic-oscillator basis. The
eigenstates are thus given in terms of linear combinations of
many-body basis states. In order to describe isospin-symmetry
breaking effects, the many-body Hamiltonian should contain
Coulomb and charge-dependent terms of nuclear origin. If
the eigenproblem is solved in a sufficiently large A-body
basis of many harmonic-oscillator shells, the eigenvectors
can be used to compute a realistic Fermi matrix elements,
as, for example, has been done for 10C in the no-core shell
model with 3N forces included [13]. However, for heavier
nuclei, calculations are feasible only in restricted model spaces,
containing one or two harmonic-oscillator shells beyond a
closed-shell core. Effective isospin-nonconserving interaction
introduces the isospin-symmetry breaking in the mixing of

various harmonic-oscillator configurations within the model
space. In addition, calculation of transition matrix elements
involves radial integrals which should be computed using real-
istic spherically symmetric proton and neutron wave functions,
obtained from a finite-range potential with a Coulomb term.
The protons in a parent nucleus are less bound than the neutrons
in a daughter nucleus because of the Coulomb repulsion. Since
the model space is restricted to a single oscillator shell, in
practice the only way to deal with the problem is to replace the
harmonic-oscillator radial wave functions by single-particle
wave functions obtained from a realistic spherically symmetric
mean-field potential. This accounts for the isospin-symmetry
breaking effects beyond the valence space. Thus, there are
two sources of the deviation of the Fermi matrix element
from its model-independent value: one is from the effective
charge-dependent Hamiltonian and the other is from the radial
mismatch of proton and neutron single-particle wave functions.
It will be shown below that, within the first-order perturbation
theory, the correction δC can be expressed as a sum of two
terms corresponding to the two sources of isospin-symmetry
breaking mentioned above.

The present study focuses on the radial mismatch between
proton and neutron single-particle wave functions, which
represents the main contribution to the nuclear structure
correction to the Fermi matrix element. Currently, two types
of a mean-field potential are considered in this respect. The
first one is the phenomenological WS potential including a
central, a spin-orbit, and an electrostatic repulsion term. A
series of calculations using this potential has been carried
out by Towner and Hardy [2,4]. These authors adjusted case-
by-case the depth of the volume term or added an additional
surface-peak term to reproduce experimental proton and neu-
tron separation energies. In addition, they adjusted the length
parameter of the central term to fix the charge radii of the
parent nuclei. The second type of a mean-field potential is
that obtained from self-consistent HF calculations using a
zero-range Skyrme force, as was first proposed by Ormand
and Brown in 1985 [14] and refined in the subsequent papers
[6,7].

The results obtained from both types of mean-field potential
are equivalently in good agreement with the CVC hypothesis;
however, the δC values from Skyrme-HF calculations are con-
sistently smaller than those obtained from the WS calculations.
This discrepancy was thought to be due to the insufficiency of
the Slater approximation for treating the Coulomb exchange
term. Towner and Hardy highlighted that the asymptotic
limit of the Coulomb potential in the Slater approximation is
overestimated by one unit of Z. To retain this property, they
proposed a modified HF protocol [5], namely they performed
a single calculation for the nucleus with (A − 1) nucleons
and (Z − 1) protons and then used the proton and the neutron
eigenfunctions from the same calculation to compute the radial
overlap integrals. Their result leads to a significant increase of
the corresponding correction to the Fermi matrix element and
provides a better agreement with the values obtained with WS
radial wave functions. However, we warn that such a method
is rooted in Koopman’s theorem, which is not fully respected
by the HF calculations, in particular with a density-dependent
effective interaction.
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FIG. 2. The element Vud of the CKM matrix obtained by
RHF+RPA calculations with PKO1 and by RH+RPA calculations
with DD-ME2 in comparison with those in shell model (H&T) [19]
as well as in neutron decay [7], pion β decay [5] and nuclear mirror
transitions [6].

the systematic errors are not taken into account. In Fig. 2,
the element Vud of the CKM matrix obtained by RHF+RPA
calculations with PKO1 and by RH+RPA calculations with
DD-ME2 are shown in comparison with those in the shell
model (H&T) [19] as well as in neutron decay [7], pion β
decay [5], and nuclear mirror transitions [6].

It can be clearly seen in Table IV that the matrix element
|Vud | determined by the 0+ → 0+ superallowed transitions
mainly depends on the treatment of the Coulomb field and
less sensitive to the particular effective interactions. Switching
either on or off the exchange contributions of the Coulomb
field, the discrepancy caused by different effective interactions
is much smaller than the statistic deviation. It is interesting
to note that the present |Vud | values well agree with those
obtained in neutron decay, pion β decay and nuclear mirror
transitions. However, the sum of squared top-row elements
considerably deviates from the unitarity condition, which is in
contradiction with the conclusion in shell model calculations
(H&T) [19]. This calls for more intensive investigations in
the future. For example, mean field and RPA calculations
including the proper neutron-proton mass difference, isoscalar
and isovector pairing, and deformation should be done. It
should also be emphasized that apart from the proper treatment
of pairing by either BCS or Bogoliubov approaches, the
particle number projection must be implemented as well in
order to remove the artificial isospin symmetry breaking effects
due to the particle number violation.

IV. SUMMARY AND PERSPECTIVES

In summary, self-consistent relativistic RPA approaches are
applied to calculate the isospin symmetry-breaking corrections
δc for the 0+ → 0+ superallowed transitions. In the RHF+RPA
framework the density-dependent effective interactions PKO1,
PKO2, and PKO3 are employed, while in the RH+RPA frame-
work the density-dependent effective interactions DD-ME1
and DD-ME2 as well as the nonlinear effective interactions
NL3 and TM1 are used.

It is found that the proper treatments of the Coulomb field
is very important to extract the isospin symmetry-breaking
corrections δc. By switching off the exchange contributions
of the Coulomb field, Ex and δc in RHF+RPA calculations
recover the results in RH+RPA calculations. In other words,
although the meson exchange terms can be somehow effec-
tively included by adjusting the parameters in the direct terms,
this has not been done for the Coulomb part in the usual RH
approximation.

With the isospin symmetry-breaking corrections δc calcu-
lated by relativistic RPA approaches, the nucleus-independent
Ft values are obtained in combination with the experimental
f tvalues in the most recent survey and the improved radiative
corrections. It is found that the constancy of the Ft values
is satisfied for all self-consistent relativistic RPA calculations
here. It is also found that theFtvalues of RHF+RPA are about
2 s larger than those of RH+RPA, which are larger than the
difference due to the different effective interactions in either
RHF or RH approximations.

The values of |Vud | thus obtained well agree with those
obtained in neutron decay, pion β decay, and nuclear mirror
transitions. However, the sum of squared top-row elements
considerably deviates from the unitarity condition, which is in
contradiction with the conclusion in shell model calculations
(H&T) [19].

For the further studies, more intensive investigations in-
cluding the proper neutron-proton mass difference, isoscalar
and isovector pairing, and deformation should be done.
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[5] D. Počanić et al., Phys. Rev. Lett. 93, 181803 (2004).
[6] O. Naviliat-Cuncic and N. Severijns, Phys. Rev. Lett. 102,

142302 (2009).
[7] C. Amsler et al., Phys. Lett. B667, 1 (2008).
[8] W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 96, 032002

(2006).

[9] I. S. Towner and J. C. Hardy, Phys. Rev. C 77, 025501 (2008).
[10] H. Sagawa, N. Van Giai, and T. Suzuki, Phys. Rev. C 53, 2163

(1996).
[11] J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, and

R. Surman, Phys. Rev. C 60, 014302 (1999).
[12] S. Fracasso and G. Colò, Phys. Rev. C 72, 064310
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Figure 14: (Left) 90% CL constraints on ✏S,T at µ = 2 GeV from �-decay data, cf. Eq. (87), with ��2 = 4.61, (black ellipse), from the
analysis of pp ! e + MET + X at the 8-TeV LHC (20 fb�1) [12] (blue ellipse), and from radiative pion decay, cf. Eq. (118) [23] (orange
band). The green band shows the 90% CL bound (��2 = 2.71) using only superallowed Fermi decays. (Right) Same figure but using projected
�-decay data, cf. Eq. (100) (black) and projected LHC bounds from pp ! e+MET+X searches with 14 TeV and 300 fb�1 [23] (blue).

Requiring that the leading logarithmic part of the 2-loop correction is not larger than current bounds on the neutrino
mass, the following bounds were found [13]

|✏̃L| . 10�2
, (129)

|✏̃S ± ✏̃P | . 2⇥ 10�3
, (130)

|✏̃T | . 0.5⇥ 10�3
, (131)

where µ = 1 TeV was used as the initial running scale. The bounds on scalar and tensor interactions are about 3 times
stronger than those derived from LHC data in Eqs. (121)-(122) and orders of magnitude stronger than those from � decay,
cf. Section 4.5. The bound on the pseudoscalar coupling is also 3 times stronger than the LHC one, but still weaker than
that from pion decay, cf. Eq. (114). Finally, the neutrino-mass considerations above o↵er a valuable alternative probe for
the ✏̃L coupling, which can also be accessed through CKM unitarity, but with slightly less accuracy, cf. Eq. (79).

5.5. Electric dipole moments

It can be shown that in the SMEFT framework, the same dimension-6 e↵ective operators generating CP-violating
e↵ects in � decay would also generate at tree- or one-loop-level a non-zero nuclear and neutron Electric Dipole Moment
(EDM) [473]. As a result one can translate the stringent EDM bounds [474] in indirect limits on the �-decay CP-
violating coe�cients, such as D or R, which are two orders of magnitudes stronger than their direct limits from �-decay
measurements [13]. This takes into account the calculation of Ref. [475] that relaxed the EDM bound by an order of
magnitude with respect to Ref. [473].

In principle, these indirect bounds can be avoided through a fine-tuned cancellation with additional dimension-6
operators contributing to the EDMs, or using dimension-8 operators. The precise realization in specific models is however
nontrivial, as shown for instance for leptoquark models, where the connection with EDMs is still present, although the
indirect bounds can be relaxed in this case [473]. Finally, the EDM bounds can be avoided abandoning altogether the
SMEFT framework, introducing for example light new particles. Thus, current measurements of CP-violating coe�cients
in � decay can be considered as probes of the SMEFT framework itself, or at least its simpler realizations where large
fine-tunings are not considered. A recent and detailed review of the connection between EDMs and �-decay measurements
is presented in Ref. [13].

6. Conclusions

We have reviewed the role of precision measurements in nuclear and neutron � decay, as useful tools to improve our
understanding of fundamental interactions. Transitions with small nuclear-structure uncertainties (or none in neutron
decay) are used to learn about QCD, to extract the values of fundamental SM parameters such as Vud, and to search for
new physics.

First, we have introduced the theoretical formalism that describes � decay at the elementary level with special attention
to the latest developments, such as the precise calculations of the hadronic charges in the lattice, or the SMEFT framework
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3-sigma CKM unitarity deficit established 

Significant shift in Vud due to RC 

New dispersion relation method: 
Combined Exp + LQCD + ChPT +… 
Unified nuclear and universal RC 
Further work necessary 

Improvement in understanding theory 
issues does not guarantee smaller 
uncertainties 

Beta decays remain a BSM testing ground 
even in the high-lumi LHC era
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