

Belle II prospects for the measurements of $|\,V_{us}\,|\,,|\,V_{cd}\,|$ and $|\,V_{cs}\,|$

Jitendra Kumar On behalf of the Belle II collaboration

> Carnegie Mellon University

Outline

Overview of measurements, studies and future prospects

- Belle II detector and data taking status
- \blacktriangleright Charm/ τ potential and performance at Belle II
- \blacktriangleright Belle II prospects on $|V_{us}|, |V_{cd}|$ and $|V_{cs}|$
- Summary

Ref: Belle2 TDR: arXiv: 1011.0352

Prospects for measurements of Vus, Vcd and Vcs at Belle II

Belle II data status

Continued data-taking through Covid-19 pandemic otal integrated Weekly luminosity $[fb^{-1}]$ 12 ▶ Integrated luminosity Lint ~223 fb⁻¹ (Nov 18, 2021) 10 \blacktriangleright Highest instantaneous luminosity ~3.1 × 10³⁴ cm⁻²s⁻¹ 8 o New world record archived in June 2021 5* • SuperKEKB design luminosity: 6.5×10^{35} cm⁻²s⁻¹ 2 see Alessandro Gaz' talk 1500 Integrated Luminosity (delivered) [fb⁻¹] projection Target 1300fb⁻¹ Base 1000 900fb⁻¹ 800fb⁻¹ ∘ so far.. 600fb 500 LS1 2020/4 2022/4 2021/4 2023/4 2024/4 Date

BelleII charm/ τ studies focused on detector/reconstruction performance, resolutions, and systematic effects..

charm/ τ opportunities at Belle II

Powerful **SuperKEKB**

- ▶ 50 ab⁻¹ = ~50 x Belle
- e+e- collisions (asymmetric beam energies)
 - o offer stringent kinematic constraints for reconstruction of final states with neutrinos
 - o acceptance and trigger criteria that introduce much less bias on flight length and kinematic properties
 - ...more in <u>Physics Book</u>

Impact

Charm Physics

O B-factory ► "charm-factory" (60×10⁹ pairs of c with 50 ab⁻¹)

- o excellent Dalitz plot analysis (uniform efficiency and non-biasing trigger)
- o better reconstruction of neutrinos

▶ т Physics

- O B-factory ► "T-factory" (~50×10⁹ events with 50 ab⁻¹)
 - o measure wide range of observables (CP asymmetries, invariant mass spectra, lepton universality etc.)
 - o precision measurements or indirect search of BSM (beyond SM) physics
 - o direct search of forbidden decays

Ref: Belle2 Physics Book arxiv1808.10567

charm/ τ opportunities at Belle II

highlights of **Belle II**

New silicon vertex detector provides better vertex resolution

- Good PID even with higher beam background environment
- ▶ More tracking volume⁸ \rightarrow higher K_s efficiency (w.r.t. LHCb)
- ▶ .. more in <u>TDR</u> and <u>Physics Book</u>

Impact

▶ Charm/т Physics

- O Facilitate measurement of mixing parameters, and CP violations with neutrals in the final state
- **O** Belle II performance is expected to improve w.r.t. to Belle;
 - **o** improved IP resolution (e.g. x2 better D⁰ proper time resolution)
 - o reduced statistical uncertainties
 - o ...and if systematic uncertainties are reduced

^vfrom Central Drift Chamber (CDC) and Silicon Vertex Detector(SVD)

Prospects for measurements of Vus, Vcd and Vcs at Belle II

25 Nov 2021

1 | V_{us} | status and Belle II prospects

- $% s \leftrightarrow u$ transition
- - ▶ kaon decays
 - traditional (also for form factor) and most accurate among all
 - but precision is limited from theory (LCQD) uncertainties (on form factor $f_+(0) \& f_k/f_{\pi}$)
 - hyperon decays
 - ▶ τ decays with strangeness in the final state (today's focus)

1. via spectral moments : au o s decays

$$|V_{us}| = \sqrt{\frac{R_{\rm s}}{\frac{R_{\rm ns}}{|V_{ud}|^2} - \delta_{\tau}}} \qquad \begin{array}{l} {\rm S} \mbox{ (hadron with S = 0)} \\ {\rm NS} \mbox{ (hadron with S \neq 0)} \end{array}$$

V_{us} | = 0.2192 ± 0.0019 (<u>HFLAV 2021 preliminary</u>)
 -3.6σ lower from CKM unitarity

• alternate methods [1], [2]: consistent with K and CKM unitarity

0.225 -

0.215

0.220 - $|V_{us}|(\tau \rightarrow s)$

 $|V_{us}|$

 $|V_{us}|(\tau \rightarrow K/\tau \rightarrow \pi)$

0.973

0.974

IV_{ud}I

fit

0.975

0.976

IV_{ud}I

Belle II prospects

 $|V_{us}|(\tau \rightarrow K/\tau \rightarrow \pi)$ Figure 2: Results of a $|V_{ud}|$ - $|V_{us}|$ simultaneous fit. The bands describe the constraints corresponding to the $|V_{ud}|$ measurement, the $|V_{us}|_{\tau s}$ and the $|V_{us}|_{\tau K/\pi}$ determining to the entropy of the entro Currents,....

CKM

unitarity

— will perform LFU like analysis (use 3x1 and 1x1 topologies)

0.230

- statistical uncertainties will be improved with larger data-set
- also improved systematics from
 - PID¹, trigger efficiency from detector⁷upgrades 0.976
 - MC inputs (background estimation, modeling of decays²)
 - that use the τ measurements. The oblique has corresponds to the CKM matrix durings
- 1. PID (scale factor uncertainty will scale inverse to the statistics of the data sets) to 10 uncertainty on the W Right diatoged fit
- 2. Modeling of decays in the generator (KKMC, Tauola)

Prospects for measurements of Vus, vcd and vcs at Belle II

Belle II PID performance (efficiency/fake rates) $D^{*+} \to D^0 [K^- \pi^+] \pi^+$

25 Nov 2021

2 | V_{cs} | status and Belle II prospects

- Cabibbo-favoured (c \rightarrow s transition)
- - with *D* and *D*_s meson decays (today's focus)
 - Leptonic $(D_s \rightarrow \ell \nu)$ decay \rightarrow simplest and theoretically cleanest processes Decay constants f_D is required from Lattice QCD
 - Semi-leptonic decay $(D \rightarrow K\ell\nu)$ Form factor $f(q^2)$ is required from Lattice QCD

• charm baryon and W^{\pm} decays

$|V_{cs}|$ via leptonic decay: $D_s \rightarrow \ell \nu$

$$\Gamma(D_{(s)}^{+} \to \ell^{+}\nu) = \frac{G_{F}^{2}}{8\pi} f_{D_{(s)}^{+}}^{2} |V_{cd(s)}|^{2} M_{D_{(s)}^{+}} M_{\ell^{+}}^{2} \left(1 - \frac{M_{\ell^{+}}^{2}}{M_{D_{(s)}^{+}}^{2}}\right)^{2}$$

Overview

▶ decay modes: $\rightarrow \mu\nu$, $\rightarrow e\nu$ & $\rightarrow \tau\nu$

▷ decay suppressed by helicity conservation hence decay rates $\propto m_l^2$

- $\rightarrow e\nu$ branching fraction is very small ~ 10-7
- $\rightarrow \tau \nu$ is favored over $\mu \nu$

analysis method (Belle)

$$e^{+}e^{-} \rightarrow c\bar{c} \rightarrow D_{tag}X_{frag}K_{frag}D_{s}^{*-}(\rightarrow D_{s}^{-}\gamma)$$

$$D^{+}, D^{0}, \Lambda_{c}^{+} \& D^{*+}, D^{*0} \qquad \pi, K(even), p \qquad {}^{\text{Tag}}_{\text{Frag}}$$

Tag: Tagged decays Frag: Fragmented particles

Step 1: reconstruct tag side D_{tag} , build X_{frag} and then extract D_s^- via missing mass analysis \rightarrow missing mass peak at $\sim D_s^-$ mass

Step2: used signal from step 1 and search/extract D_s^- yield for $\rightarrow \mu\nu$, $\rightarrow e\nu \& \rightarrow \tau\nu$

$$\neg \text{ measure branching fraction } \triangleright \quad \mathcal{B}(D_s^+ \to f) = \frac{N(D_s^+ \to f)}{N_{D_s}^{\text{inc}} \cdot f_{\text{bias}} \cdot \varepsilon(D_s^+ \to f|\text{incl. } D_s^+)}.$$

Step3: calculate $f_{D_s}V_{us}$ from step 2, then two approach

1. take f_{D_s} from Lattice QCD	2. take V_{us} from CKM unitarity
\rightarrow extract V_{us} and compare w/ CKM unitarity	\rightarrow extract f_{D_s} and compare w/ Lattice QCD

Prospects for measurements of Vus, Vcd and Vcs at Belle II

CKM 2021

$|V_{cs}|$ via leptonic decay: $D_s \rightarrow \ell \nu$

$$\Gamma(D_{(s)}^{+} \to \ell^{+}\nu) = \frac{G_{F}^{2}}{8\pi} f_{D_{(s)}^{+}}^{2} |V_{cd(s)}|^{2} M_{D_{(s)}^{+}} M_{\ell^{+}}^{2} \left(1 - \frac{M_{\ell^{+}}^{2}}{M_{D_{(s)}^{+}}^{2}}\right)^{2}$$

Current status $\triangleright D_s \rightarrow \mu \nu$

• several results in past years by <u>BaBar</u>, <u>Belle</u>, <u>BESIII[1]</u> [2][latest] and <u>CLEO-c</u>

Prospects for measurements of Vus, Vcd and Vcs at Belle II

25 Nov 2021

• Belle results @ 282 fb⁻¹ $\sim 2567 D \rightarrow K \ell \nu$

Current status $\gg D \rightarrow K\ell\nu$

• several results in past years by <u>BaBar</u>, <u>Belle</u>, <u>BESIII</u> and <u>CLEO-c</u>

HFLAV 2021 ~0.4% precision • Form factors $f_{\pm}^{DK}(0) = 0.765 \pm 0.0031$ (ETM 17D, 18)

- $|V_{cs}| = 0.9447 \pm 0.0043(exp.) \pm 0.0137(LQCD)$

Belle II prospects $e^+e^- \rightarrow c\bar{c} \rightarrow D_{tag}^{(*)}X_{frag}D_{sig}^{*-}(\rightarrow \bar{D}_{sig}^0\pi_s^-)$

• MC studies with 1 ab⁻¹

• based on
$$M_{miss}^2 = P_{miss}^2 \& U_{miss} = E_{miss} - P_{miss}$$

- missing mass resolution is comparable with Belle
- small continuum background contribution
- with 50 ab⁻¹ data
 - larger data (~4.55 x $10^5 D \rightarrow K \ell \nu$)
 - \rightarrow reduced stat. uncertainties
- scenario with charm factory experiments (e.g. BESIII) • challenging to compete with BESIII (with 20 fb⁻¹ data plans) • but Belle II will add important confirmation / constraints

 $P_{\rm miss} = P_{e^+} + P_{e^-} - P_{D_{\rm tag}} - P_{X_{\rm frag}} - P_h - P_l$

Prospects for measurements of Vus, Vcd and Vcs at Belle II

0.3

3

|V_{cd}| status and prospects

- Cabibbo-suppressed (c \rightarrow d transition)
- Sector Experimental measurements
 - o Early study via neutrino production of charm (νN)
 - More precise results using D meson decays (today's focus)
 - ▶ Leptonic ($D^+ \rightarrow \ell^+ \nu$) decay

Decay constant f_D is required from (e.g. Lattice QCD)

Semi-leptonic decay $(D \rightarrow \pi \ell \nu)$

Form factor $f(q^2)$ is required from theory (e.g. Lattice QCD)

Overview

▶ decay modes: → $\mu\nu$, → $e\nu$ & → $\tau\nu$ ▶ Belle II analysis method will be similar to $D_s \rightarrow \ell\nu$ analysis

Current status

▶ $\mathbf{f}_{\mathbf{D}} \cdot |\mathbf{V}_{cd}|$: so far from charm factories only

- $-\mu^+\nu_{\mu}$ <u>CLEO-c(2008)</u> and <u>BESIII (2014)</u>
- − $\tau^+ \nu_{\tau}$ → <u>CLEO-c(2008)</u> for upper limit on BR and <u>BESIII (2019)</u>
- $-e^+\nu_e \rightarrow \underline{\text{CLEO-c(2008)}}$ for upper limit on BR
 - world average $f_D \cdot |V_{cd}| = 46.1 \pm 1.0 \pm 0.3 \pm 0.2$ (from $\mu^+ \nu_{\mu}$) • ratio of $BR(\mu^+ \nu_{\mu})/BR(\tau^+ \nu_{\tau})$ is compatible with SM prediction
- ▶ decay constants f_{D^+} from LQCD

 $-f_{D^+}$ = 212.7 ± 0.7 MeV

• average from <u>FNAL/MILC 17</u> and <u>ETM 14E</u>

$\triangleright \mid V_{cd} \mid_{D \rightarrow 1\nu} HFLAV$ (June 2021)

• $V_{cd} = 0.2181 \pm 0.0049(exp.) \pm 0.0007(LQCD)$

• also consistent with semi-leptonic measurement $D \rightarrow \pi l \nu$ decays (in slide #18)

 $\Gamma(D_{(s)}^{+} \to \ell^{+}\nu) = \frac{G_{F}^{2}}{8\pi} f_{D_{(s)}^{+}}^{2} |V_{cd(s)}|^{2} M_{D_{(s)}^{+}} M_{\ell^{+}}^{2} \left(1 - \frac{M_{\ell^{+}}^{2}}{M_{D_{(s)}^{+}}^{2}}\right)^{2}$

• Belle II (50 ab⁻¹)

- ► $D^+ \rightarrow \mu^+ \nu_{\mu}$: inclusive (exclusive) decays ~ 3.5 x 10⁶ (1250)
- Statistical error on $\delta(f_D \cdot |V_{cd}|) = 0.65 \text{ MeV}$ (which currently dominates in WA)
 - → improved by factor of 2 w.r.t. to current measurement from CLEOc (1.9) and BESIII (1.2)
 - ~ also compititive to BESIII plans with 20 fb-1 (~current x7) planned over next two years

lecay modes: $\pi e \nu \& \pi \mu \nu$

Current status

O Several results in past years by <u>BaBar</u>, <u>Belle</u>, <u>BESIII</u> and <u>CLEO-c</u>

• Form factors $f_{+}^{\pi K}(0) = 0.612 \pm 0.035$ (ETM 17D, 18)

• $|V_{cd}| = 0.2249 \pm 0.0028(exp.) \pm 0.0055(LQCD)$

less precision > 2%

CKM 2021

Belle II prospects

• Belle II MC studies with 1 ab⁻¹ (method discussed at slide: #<u>11</u>) — missing mass resolution is comparable with Belle

• with 50 ab⁻¹ data-set

— larger sample ~7 x 10⁵ (projected w/ BaBar analysis) of $D_s \rightarrow \pi \ell \nu$ ~ reduced stat. error

- But Belle measurement have larger systematic err.

Prospects for measurements of Vus, Vcd and Vcs at Belle II

$\frac{d\Gamma}{dq^2} = \frac{G_F^2 p_h^3}{24\pi^3} |V_{cd}|^2 |f_+(q^2)|^2$

▶ Belle results @ 282 fb⁻¹

25 Nov 2021

Summary

SuperKEKB and Belle II provide an excellent platform for charm/ τ measurements

– a good start ..

```
 \tau(D^0) = 410.5 \pm 1.1 \,(\text{stat}) \pm 0.8 \,(\text{syst}) \,\text{fs Phys. Rev. Lett. 127, 211801 (2021)}
```

- World's best: D⁰ decay time resolution (x2 better than that of Belle/BaBar)
- more exciting results to come soon with larger luminosity in coming years.

CKM parameters with full 50 ab⁻¹

\odot |Vus| (from au)

- Belle II will provide an important insight to the current discrepancy of $|V_{us}|$ from kaon decays and τ decays (also inclusive vs exclusive)
- also will add important input to the current $3\sigma |V_{ud}| |V_{us}|_{K}$ anomaly

●|Vcs| and |Vcd| (from charm)

- o Statistically improved results from leptonic and semi-leptonic D/D_s decays
- Belle II will also measure |Vcd| from $D^+ \rightarrow \mu^+ \nu$ decays (first attempt in B-factory)

Thank you

CKM Matrix

$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

• 3x3 unitarity complex matrix

► Unitarity constraints + freedom to redefine the complex phase (~ 4 parameters == 3 mixing angle and 1 phase ⇒ CPV)

• with Wolfenstein parameterization

$$\blacktriangleright \lambda = \sin(\theta_c) = 0.22$$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

• unitarity triangles

V_{qq'}V[†]_{qq'} = V[†]_{qq'}V_{qq'} = 1
 q≠q': 6 triangle relations (∑3 complex number = 0)

 $V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0$

