LATTICE QCD PREDICTION OF ε'/ε (AND STATUS OF ε , $K \to \pi \bar{\nu} \nu$)

Mattia Bruno for the RBC/UKQCD collaboration

11th International Workshop on the CKM Unitarity Triangle, 2021, University of Melbourne (Virtual) November $25^{\rm th}$, 2021

MOTIVATIONS

CP violation in SM too small for observed matter/anti-matter asymm. tantalizing hint for physics beyond SM

CP violation discovered in $K \to \pi\pi$ decays physical states $K_{L,S}$ linear combo of CP eigenstates $\Delta m_K = M_L - M_S$ mass difference indirect CP violation: ε direct CP violation: ε'

From experiments we get ratios of amplitudes, $\eta_{ij} = \frac{A[K_L \to \pi^i \pi^j]}{A[K_S \to \pi^i \pi^j]}$ we can relate $\eta_{00}, \eta_{+-} \leftrightarrow \varepsilon, \varepsilon'$ and get $|\varepsilon| = 2.228(11) \cdot 10^{-3}$ $\operatorname{Re}\left(\varepsilon'/\varepsilon\right) = 1.66(0.23) \cdot 10^{-3}$

Framework

1. Hadronic (\simeq low-energy) weak decays (=mediated by W bosons) Effective field theory \to integrate heavy degrees of freedom W,Z, top, bottom, but also charm $\to N_f=2+1$ theory

$$\mathcal{H}_{\Delta S=1} = \frac{G_{\mathrm{F}}}{\sqrt{2}} V_{us}^{\star} V_{ud} \sum_{i=1}^{10} [z_i(\mu) + \tau y_i(\mu)] Q_i(\mu)$$

$$z_i, y_i \text{ Wilson coefficients, known to 1-loop in } \overline{\mathrm{MS}}$$

$$\tau = -V_{ts}^{\star} V_{td} / (V_{us}^{\star} V_{ud}) \text{ complex} \rightarrow \mathrm{CP\text{-violation}}$$

$$Q_i(\mu) \text{ four-quark ops, must be computed in } \overline{\mathrm{MS}}$$

- 2. Using isospin symmetry, classify amplitudes $A_I e^{i\delta_I} = \langle (\pi\pi)_I | \mathcal{H}_W | K \rangle$ e.g. $\varepsilon'/\varepsilon = \frac{i\omega e^{i(\delta_2 \delta_0)}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right], \quad \omega = \frac{\operatorname{Re} A_2}{\operatorname{Re} A_0}$
- **3.** Given non-perturbative nature of A_I we use Lattice QCD our biggest contribution is $\langle (\pi\pi)_I | Q_i(\mu) | K \rangle$

LATTICE FIELD THEORIES

Mathematically sound non-perturbative formulation of QCD

lattice spacing $a \to {\it regulate~UV}$ divergences finite size $L \to {\it infrared~regulator}$

Continuum theory
$$a \to 0$$
, $L \to \infty$

$$\langle O \rangle = \mathcal{Z}^{-1} \int [DU] e^{-S[U]} O(U) \approx \frac{1}{N} \sum_{i=1}^{N} O[U_i]$$

Very high dimensional integral \rightarrow Monte-Carlo methods

HADRONIC WEAK DECAYS

Theoretical Challenges - I

Formulation of LQCD w/ good chiral symmetry very important often prevents power divergences $1/a^k$ [Capitani, Giusti '01, ...] suppresses mixing w/ wrong chiralities (simpler renormalization)

Fermion doubling ↔ chiral symmetry [Nielsen-Ninomiya '81] domain-wall formulation (DWF) [Kaplan '92, Shamir '93, Brower et al. '12] other formulations: staggered, Wilson-clover and twisted mass

Well-defined non-pertubative renormalization scheme momentum schemes [Martinelli et al. '95][Sturm et al '09] regularization independent ightarrow pert. conversion to $\overline{\mathrm{MS}}$ other schemes (Schrödinger functional, Wilson flow) under devel

4 D > 4 A > 4 B > 4 B >

HADRONIC WEAK DECAYS

Theoretical Challenges - II

```
[Lüscher '85, ...] [Lellouch-Lüscher '00, ...] Finite volume L: no asymptotic states, scattering? decays? single-particle states are e^{-mL} close to L=\infty multi-particle states generate 1/L^k effects removable below 4 particle threshold, such that O(e^{-mL}) \to m_K < 4m_\pi, but m_D \gg 4m_\pi (new ideas under devel)
```

```
Euclidean metric: correlator \langle 0|O^{\dagger}(t)O(0)|0\rangle = \langle 0|O^{\dagger}(0)e^{-\hat{H}t}O(0)|0\rangle Eucl. metric filters low energies at t\gg 0 [Maiani, Testa '90] \rightarrow higher states, e.g. \hat{H}|\pi\pi\rangle = m_K|\pi\pi\rangle, exponentially suppressed boundary conditions to constrain \pi\pi ground state at m_K [Blum et al. '12][Christ et al. '19]
```


HADRONIC WEAK DECAYS

Numerical challenges

FIG. 2: The four classes of $K \to \pi\pi$ Wick contractions.

Signal-to-noise problem for lattice correlators at large separations

signal $\propto e^{-M_s|x_0-y_0|}$, error $\propto e^{-M_e|x_0-y_0|}$

[Parisi '84, Lepage '89]

e.g. type1 $M_spprox m_K$, $M_epprox 2m_\pi$

type4 noisiest: $M_e = 0$ at large t

Status $\Delta I = 1/2$ rule

 $K o (\pi\pi)_{I=2}$ complete calculation [RBC/UKQCD '15] no disconnected diagrams, numerically simpler continuum limit from 2 lattice spacings; phys. quark masses

lattice ${\rm Re}\,A_0/{\rm Re}\,A_2 = 19.9(5.0)$

 ${
m Re}\,A_0$ [RBC/UKQCD '20] and ${
m Re}\,A_2$ [RBC/UKQCD '15]

experiment ${\rm Re}\,A_0/{\rm Re}\,A_2 = 22.46(6)$

QCD induces remarkable cancellation at phys. quark masses

matrix element $\Delta I=3/2$, $Q_2\simeq -0.7Q_1$

understanding of $\Delta I=1/2$ from first principles

[RBC/UKQCD '15]

Status $\pi\pi$ scattering

[RBC/UKQCD '21] multi operators w/ same quantum numbers

better constrain spectrum and amplitudes

significant improvement syst. errors

solved I=0 $\pi\pi$ phase shift discrepancy w/ dispersive approach

same multi-ops technique also for $K \to \pi\pi$

Status ε'/ε - I

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \frac{\omega}{\sqrt{2}|\varepsilon|}\operatorname{Re}\left[ie^{i(\delta_2-\delta_0-\phi_\varepsilon)}\right]\left[\frac{\operatorname{Im}A_2}{\operatorname{Re}A_2} - \frac{\operatorname{Im}A_0}{\operatorname{Re}A_0}\right]$$

- 1. use ω , Re A_0 , Re A_2 from experiment
- 2. phases either from dispersive or lattice, no difference
- 3. take $\operatorname{Im} A_2$ from previous LQCD [RBC/UKQCD '15]
- 4. take $\operatorname{Im} A_0$ from new work [RBC/UKQCD '20]

$$\begin{array}{ll} \operatorname{Re}\left(\varepsilon'/\varepsilon\right) = 21.7(2.6)(6.2)(5.0) \cdot 10^{-4} \text{ from lattice} & \text{[RBC/UKQCD '20]} \\ \operatorname{Re}\left(\varepsilon'/\varepsilon\right) = 16.6(2.3) & \cdot 10^{-4} \text{ from experiment} \end{array}$$

Errors:

(2.6) statistical, (6.2) systematic, (5.0) isospin-breaking

Status ε'/ε - II

```
Error budget Im A_0 = -6.98(0.62)(1.44) \times 10^{-11} GeV
     9%: statistical, remarkable achievement
     21%: systematic error [(16\%)^2 + (12\%)^2 + (6\%)^2]^{1/2}
     \rightarrow 16\%: lattice syst. errors [(12\%)^2 + (7\%)^2 + \cdots]^{1/2}
         \rightarrow 12\%: cont. limit
           Im A_0 from single lattice spacing
           estimate taken from \Delta I = 3/2 matrix elements
         \rightarrow 7%: finite volume effects
         \rightarrow \dots
     \rightarrow 12%: Wils. Coefficients
        due to perturbative truncation
           lack of charm in calculation leads to large effects
```

 $\rightarrow 6\%$: parametric errors, e.g. τ , α_s

FUTURE OF ε'/ε

Lattice errors dominated by estimates of discretization effects
next-gen computers unlock opportunity for cont. limit
current plan: add two additional ensembles [Kelly Lattice '21]

 $\begin{array}{ll} \mbox{Independent calculation w/ available ensembles periodic BC} \\ \mbox{need to extract states exponentially suppressed} & \mbox{[Tomii Lattice '21]} \end{array}$

On-going work for $3 \rightarrow 4$ flavor matching using LQCD crucial to bypass PT at charm scale [PoS LATTICE2018 (2019) 216] [PoS LATTICE2018 (2019) 216]

New devel include EM effects in two-particle quantization condition [Karpie Lattice '21][Christ et al. '21]

$$\varepsilon_K$$

In usual two-state picture w/
$$|K_0\rangle, |\bar{K}_0\rangle$$
 and $H_{ij}=M_{ij}-i\Gamma_{ij}$
$$\Delta m_K=M_L-M_S \text{ and } \varepsilon_K \text{ generated from } K_0-\bar{K}_0 \text{ mixing}$$

$$\Delta m_K=2\mathrm{Re}\,M_{12}\,,\quad |\varepsilon_K|\propto \left[\frac{\mathrm{Im}\,M_{12}}{\Delta m_K}+\frac{\mathrm{Im}\,A_0}{\mathrm{Re}\,A_0}\right]$$

$$\mathrm{Im}\,M_{12}=\mathrm{Im}\,M_{12}^{\mathrm{SD}}+\mathrm{Im}\,M_{12}^{\mathrm{LD}} \tag{Buras et al '10}$$

Short-distance from $\langle \bar{K}_0|\mathcal{H}_{\Delta S=2}|K_0\rangle \to B_K$ parameter single operator + external kaons \to high-precision from LQCD but renormalization: break chiral symm. mixing w/ wrong chiralities $B_K^{\overline{\rm MS}}(2~{\rm GeV})=0.5570(71)~[1.2\%]~,~~N_f=2+1$ [FLAG '21] Lattice QCD calculations at O(1-2%) are standard careful if evaluate B_K with dynamical charm

Long-distance effects from double insertions of $\mathcal{H}_{\Delta S=1}$ new frontier for Lattice QCD

BI-LOCAL OPERATORS

Theoretical challenges

$$\int d^4x \langle f| \mathrm{T} \big[\mathcal{O}_1(x) \mathcal{O}_2(0) \big] |i\rangle$$

[Isidori et al. '05][Chirst et al. '12]

1. new divergences $x \to 0$? [Christ et al. '16][Christ et al. '18] Δm_K (and $K \to \pi \ell^+ \ell^-$) fully protected $N_f = 4$ ε_K and $K \to \pi \bar{\nu} \nu$ no power divergeces $1/a^k$ w/ χ symm. additional renormalization (log divergence)

$$\sum_{t=0}^{T} \langle f|\mathcal{O}_1(t)\mathcal{O}_2(0)|i\rangle \simeq \sum_{n} \frac{\langle f|\mathcal{O}_1|n\rangle\langle n|\mathcal{O}_2|i\rangle}{m_f - E_n} \left[1 - e^{-(E_n - m_f)T}\right]$$

- 2. growing exponentials $E_n < m_f$, problem of analytic continuation if $f, i = m_\pi, m_K$ and $m_\pi L \simeq 4$ they can be handled for f, i heavy mesons still a challenge (new methods under study)
- 3. finite volume effects [Christ, Feng, Martinelli, Sachrajda '15] worked out from extension Lellouch-Lüscher correction

Status - LD effects

Numerical challenges

```
\begin{array}{l} \Delta m_K \\ \Delta m_K^{\rm exp} = 3.483(6) \cdot 10^{-12} \ {\rm MeV} \\ {\rm first \ numerical \ results \ only \ in \ PoS} \\ {\rm preliminary \ results \ at \ } m_\pi^{\rm phys} \rightarrow \Delta m_K = 6.7(1.7) \cdot 10^{-12} \ {\rm MeV} \\ {\rm dominated \ by \ discr. \ errors \ from \ charm} \\ m_\pi^{\rm phys} \rightarrow {\rm large} \ L \oplus {\rm charm} \rightarrow {\rm fine} \ a: \ {\rm challenging} \end{array}
```

 ε_K

$$\begin{split} |\varepsilon_K^{\rm exp}| &= 2.228(11) \cdot 10^{-3} \\ \text{conference papers, latest } \varepsilon_K^{\rm LD} &= 0.17(1) \cdot 10^{-3} \\ \text{significant amount of Wick contractions and topologies} \\ \text{preliminary results at } m_\pi \simeq 390 \text{ MeV, unphys. charm} \\ \text{approx 5\% consistent w/ expectation but requires improvements} \end{split}$$

STATUS - LD EFFECTS

```
K \to \pi \bar{\nu} \nu
```

FCNC ideal probes for new physics effects mostly dominated by short-distance effects, QCD input from $K_{\ell 3}$ current theory predictions around 10 % [Buras et al '15] LD effects potentially up to 6% in $K^+ \to \pi^+ \bar{\nu} \nu$ exploratory calculation at unphys. kinematics [RBC/UKQCD '17 '18] cancellation of WW vs Z-exchange \to will survive at $m_\pi^{\rm phys}$? 2nd calculation $m_\pi \simeq 170$ MeV, unphys. charm [RBC/UKQCD '19] small mom. dependence, clarified role of intermediate $(\pi\pi)$

Exciting results to be expected over next years for LD effects advent of (pre-)exascale era in computing crucial fine lattice spacings required for including charm (safely)

Thanks for your attention!

Q_6 in Im A_0

Example of signal-to-noise depending on diagr. topology type1 best case $M_e=2m_\pi$

type1 best case $M_e = 2m$ type2 and 3 $M_e = m_\pi$ type4 worst case $M_e = 0$

