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Introduction



Scope of this presentation 1/14

▶ treatment of hadronic uncertainties for theory predictions in and beyond the SM,
which is crucial to understand the b→ sℓℓ anomalies

▶ for review of the anomalies and phenomenology implications, see the plenary talk by
Wolfgang Altmannshofer earlier today

▶ here: focus on recent progress for non-local contributions in b→ sℓℓ



Weak Effective Theory: b→ sℓℓ SM operators 2/14

in the SM b→ sℓℓ is described by the following set of D = 6 effective operators
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with λq ≡ VqbV∗qs

▶ SM contributions to Ci(µb) known to NNLL [Bobeth, Misiak, Urban ’99; Misiak, Steinhauser ’04, Gorbahn, Haisch ’04]

[Gorbahn, Haisch, Misiak ’05; Czakon, Haisch, Misiak ’06]



Anatomy of exclusive b→ sℓ+ℓ− decay amplitudes 3/14

Aχ
λ = Nλ

{
(C9 ∓ C10)Fλ(q2) +

2mbMB
q2

[
C7FT

λ(q2)− 16π2MB
mb

Hλ(q2)
]}

nomenclature of the essential hadronic matrix elements q2 = m2
ℓℓ

Fλ local form factors of dimension-three sγµb & sγµγ5b currents

F T
λ local dipole form factors of dimension-three sσµνb currents

Hλ nonlocal form factors of dimension-five nonlocal operators

all three needed for consistent description to leading-order in αe



Spectrum 4/14

Hλ(q2) = P(λ)µ ⟨Hs|
∫
d4x eiq·x T { Jµem(x), [C1Oc1 + C2Oc2](0) } |Hb⟩
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[sketch from Blake, Gershon, Hiller 1501.03309]

▶ Oc1,2 ∼ [sΓb] [cΓ′c]

source of dominant systematic uncertainties in theoretical predictions!
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▶ Oc1,2 ∼ [sΓb] [cΓ′c]

▶ for q2 − 4m2
c ≪ Λhadmb, expand T-product in light-cone operators [Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ leading contributions expressed through local form factors Fλ
▶ correction suppressed by 1/(q2 − 4m2

c) can by systematically obtained



Spectrum 4/14
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▶ Oc1,2 ∼ [sΓb] [cΓ′c]

▶ for q2 = M2
J/ψ and q2 = M2

ψ(2S), spectrum dominated by non-leptonic decays
▶ experimental measurements provide additional information about Hλ



Spectrum 4/14
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▶ Oc1,2 ∼ [sΓb] [cΓ′c]

new strategy [Bobeth,Chrzaszcz,DvD,Virto ’17]

▶ compute Hλ at spacelike q2

▶ extrapolate to timelike q2 ≤ 4M2
D using suitable parametrization

▶ include information from non-leptonic decays to narrow charmonia J/ψ and ψ(2S)



Compute Light-Cone OPE 5/14

4m2
c − q2 ≫ Λ2hadr.

▶ expansion in operators w/ light-like sep. x2 ≃ 0
[Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ employing light-cone expansion of charm
propagator [Balitsky, Braun 1989]
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⇒ Hλ = coeff #1×Fλ +Hspect.
λ

+ coeff #2× Ṽλ

▶ leading part identical to QCD fact. results [Beneke, Feldmann, Seidel ’01&’04]

▶ subleading matrix element Ṽλ can be inferred from B-LCSRs
[Khodjamirian, Mannel, Pivovarov, Wang ’10; Gubernari, DvD, Virto ’21]



Compute Soft gluon matrix elements 6/14

matrix elements of a single operator appearing at subleading power in the LCOPE

Ṽλ ∼ ⟨M| s(0)γρPLGαβ(−unµ)b(0) |B⟩

for B→ K(∗) and Bs → ϕ transitions

▶ matrix element has been prev. calculated in light-cone sum rules
[Khodjamirian, Mannel, Pivovarov, Wang ’10]

▶ physical picture provides that the soft gluon field originates from the B meson
▶ analytical results independent of two-particle bq Fock state inside the B
▶ expressions start with three-particle bqG Fock state, and their light-cone distribution
amplitudes (LCDAs)

Φ(t,u) ∼ ⟨0| q(x)Gµν(ux)Γhbv (0) |B(vMB)⟩ xµ = tnµ

▶ original results lacking four out of eight three-particle LCDAs [Gubernari,DvD,Virto ’20]



Compute Soft gluon matrix elements 7/14

▶ we calculate the soft-gluon contributions Ṽλ to the full set of B→ V and B→ P
nonlocal form factors using light-cone sum rules [Gubernari,DvD,Virto ’20]

▶ analytic results for restricted set of LCDAs in full agreement with KMPW2010
[Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ result of restricted set fails to reproduce duality thresholds obtained from local form
factor sum rules [Gubernari, Kokulu, DvD ’18]

▶ cross check: our results reproduce the (local) duality thresholds!

▶ our numerical results differ significantly from KMPW2010
▶ reduction by factor ∼ 100, differences well understood!
▶ reduction by ∼ 10 from update inputs, and ∼ 10 from cancellations due to new terms

▶ conclusion: soft-gluon contributions are not numerically relevant for q2 < 0



Extrapolate Parametrisation of the nonlocal form factors 8/14

▶ map q2 to new variable z that develops
branch cut at q2 = 4M2

D [Bobeth, Chrzaszcz, DvD, Virto ’17]

▶ branch cut is mapped onto unit circle in z
▶ data and theory live inside the unit circle

▶ real-valued q2 ≤ 4M2
D is mapped to real-valued z

▶ expand in z
+ resonances J/ψ, ψ(2S) can be included
(poles/Blaschke factors)

+ easy to use in a fit to theory and data
+ compatible with analyticity
- expansion coefficients unbounded!

Re z

Im z



Extrapolate New parametrisation w/ dispersive bound 9/14

matrix elements H arise from nonlocal operator [Gubernari,DvD,Virto ’20]

Oµ(Q; x) ∼
∫
d4y eiQ·y T{Jµem(x+ y), [C1O1 + C2O2](x)}

construct four-point operator to derive a dispersive bound

▶ define matrix element of “square“ operator[
QµQν

Q2 − gµν
]
Π(Q2) ≡

∫
d4x eiQ·x ⟨0| T{Oµ(Q; x)O†,ν(Q; 0)} |0⟩

▶ Π(Q2) has two types of discontinuities
▶ from intermediate unflavoured states (cc, cccc, …)
▶ from intermediate bs-flavoured states (bs, bsg, bscc, …)



Extrapolate Cuts of Π 10/14
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Extrapolate Dispersion relation for Π 11/14

dispersive representation of the bs contribution to derivative of Π

χ(Q2) ≡ 1
2!

[
d
dQ2

]2
Π(Q2) = 1

2!

[
d
dQ2

]2 1
2iπ

∞∫
(mb+ms)2

ds Discbs Π(s)
s− Q2 > 0

▶ Discbs Π can be computed in the
local OPE
→ χOPE(Q2)

▶ Discbs Π can be expressed in terms
of the nonlocal form factors |Hλ|2

→ χhad(Q2)

▶ global quark hadron duality suggests that χOPE(Q2) = χhad(Q2)
▶ parametrize Hλ ∝

∑
n αλ,n fn with orthonormal functions fn

⇒ dispersive bound: χOPE ≥
∑
n

|αλ,n|2

▶ first application of such a bound to nonlocal form factors
▶ technically more challenging than for local form factors



Extrapolate New parametrisation w/ dispersive bounds 12/14

▶ expand in z
▶ fn(z) orthogonal on arc
+ accounting for behaviour on arc produces
dispersive bound on each parameter ✓

[Gubernari, DvD, Virto ’20]

▶ turns so far hardly quantifiable systematic theory
uncertainties into parametric uncertainties

▶ currently being implemented in

▶ open source software at github.com/eos/eos
▶ available from PyPI for easy dissemination to
both theory + experimental colleagues

Re z

Im z



Preliminary Results 13/14

▶ “first stage“ simultaneous fit of parameters of local and non-local form factors to
theory inputs + B(s) → {K, K∗, ϕ}J/ψ [Gubernari, Reboud, DvD, Virto (to appear)]
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▶ N.B.: non-local parameters are
complex numbers

▶ cartesian parametrisation leads
to non-gaussian posterior

▶ successfully described by
gaussian mixture density

▶ investigating polar
parametrisation
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▶ we plan to publish the mixture density in digital form, including a test statistic to
determine a goodness of fit in BSM studies



Conclusion



Summary and Outlook 14/14

▶ exploitation of b→ sℓ+ℓ− data hinges on accurate and precise information of a
number of hadronic form factors

▶ nonlocal form factors contribute the single-largest systematic uncertainty in exclusive
b→ sℓℓ decays

▶ clear road toward controlling these objects, but much work still needs to be done

▶ unitarity constraints provide a new parametrization with bounded parameters

▶ key is determination of parameter from a combined theory + data driven approach
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Extrapolate Parametrisations

▶ Taylor expand Hλ in q2/M2
B around 0 [Ciuichini et al. ’15]

+ simple to use in a fit
- incompatible with analyticity properties, does not reproduce resonances
- expansion coefficients unbounded! ⇒ impossible to estimate truncation error

▶ use information from hadronic intermediate states in a dispersion relation [Khodjamirian et al. ’10]

Hλ(q2)−Hλ(q20) =
q2−q20
2π

∫
ds ImHλ(s)

(s−s0)(s−q2) + . . .

+ reproduces resonances
- hadronic information above the threshold must be modelled
- complicated to use in a fit, relies on theory input in single point s0

▶ expand the matrix elements in variable z(q2) with branch cut at q2 = 4M2
D [Bobeth/Chrzaszcz/DvD/Virto ’17]



Extrapolate Dispersion relation for Π

the hadronic representation reads schematically:

1 ≥ 1
χOPE(Q2) 2!

[
d
dQ2

]2 ∞∫
(mb+ms)2

ds
∑
λ

ωλ(s) |Hλ(s)|2

s− Q2

▶ aim: diagonalize this expression

Ansatz:
Ĥλ(q2) ≡ P(q2)× ϕλ(q2)×Hλ(q2) ≡

∑
n
αλ,n fn(q2)

▶ Blaschke factor P(q2) removes poles of narrow charmonia
▶ outer function ϕλ accounts for weight function ωλ and Cauchy integration kernel
▶ orthonormal polynomials fn(q2) diagonalize remainder of the expression

normalisation to χOPE leads to a diagonal bound

1 ≥
∑
λ

∑
n

|αλ,n|2



Compute Soft gluon matrix elements

Transition Ṽ (q2 = 1 GeV2) GvDV2020 KMPW2010

B→ K Ã (+4.9± 2.8) · 10−7 (−1.3+1.0−0.7) · 10−4

Ṽ1 (−4.4± 3.6) · 10−7 GeV (−1.5+1.5−2.5) · 10−4 GeV

B→ K∗ Ṽ2 (+3.3± 2.0) · 10−7 GeV (+7.3+14−7.9) · 10−5 GeV

Ṽ3 (+1.1± 1.0) · 10−6 GeV (+2.4+5.6−2.7) · 10−4 GeV

Ṽ1 (−4.4± 5.6) · 10−7 GeV —

Bs → ϕ Ṽ2 (+4.3± 3.1) · 10−7 GeV —

Ṽ3 (+1.7± 2.0) · 10−6 GeV —

reduction by a factor of ∼ 200
▶ new structures in three-particle LCDAs account for factor 10 (due to cancellations!)
▶ updated inputs that enter the sum rules (mostly) linearly account for further factor 10
▶ similar relative uncertainties, but absolute uncertainties reduced by O (100)
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