

MIXING AND TIME-DEPENDENT CPV SEARCHES IN CHARM AT LHCb

DANIEL ČERVENKOV ON BEHALF OF THE **LHCB** COLLABORATION 23 NOVEMBER, 2021

CKM 2021, MELBOURNE, AUSTRALIA

CHARM PHYSICS

- Because of the severe GIM suppression, mixing is slow and CPV small (according to SM)
- m_c is (quite) close to the hadronic scale $\Lambda_{\rm QCD} \rightarrow \Lambda_{\rm QCD}/m_c$ perturbative expansion tricky
- Strong coupling $\alpha_s(m_c)$ is large \rightarrow higher order contributions and/or non-perturbative effects can be significant

- Long distance contributions are important
- Precise theoretical predictions are difficult
- Experimental input crucial to constrain charm dynamics
- Potential for measurable New Physics is great

CPV IN CHARM

- The only up-type quark decays where CPV can be studied
- Complementary to K and B
- All three types of CPV are realized in charm
 - Decay $(|A_f|^2 \neq |\bar{A}_{\bar{f}}|^2)$

PARAMETERS

 Mixing comes from a mismatch between flavour and mass eigenstates

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$$

Usually described by

$$x = \Delta m_D / \Gamma_D$$
 and $y = \Delta \Gamma_D / 2 \Gamma_D$

- In case of CPV |q/p| and $\phi \approx \phi_{\lambda_f}$ or

$$\Delta x = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$
$$\Delta y = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$

SEARCH FOR TIME-DEPENDENT CPV IN $D^0 \rightarrow h^+h^-$ ($h \in \{K, \pi\}$) 4 PRD 104, 072010 (2021)

- Same channels as ΔA_{CP} discovery $\approx -A_{\Gamma}$ $A_{CP} = \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\overline{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\overline{D}^{0}(t) \to f)} = a_{f}^{d} + \Delta Y_{f} \frac{t}{\tau_{D}} + \mathcal{O}(x^{2}, y^{2}, xy)$
- SM prediction is very small $\sim 10^{-5}$ (Kagan & Silvestrini, 2020,

Li & Umeeda, 2020)

• We don't observe A_{CP} $A_{raw} = \frac{N(D^0(t) \to f) - N(\bar{D}^0(t) \to f)}{N(D^0(t) \to f) + N(\bar{D}^0(t) \to f)} \approx a_f^d + \Delta Y_f \frac{t}{\tau_D} + A_{prod}(f, t) + A_{det}(f, t)$ $\Delta Y_f \approx x \phi_{\lambda_f} - y \left(\left| \frac{q}{p} \right| - 1 \right) + y a_f^d \approx -\Delta y$ $\Delta Y_{K^+K^-}$ needed to measure CPV in decay from time-integrated $D^0 \to K^+K^-$

Search for time-dependent CPV in $D^0 \rightarrow h^+h^-$

- D^0 from $D^{*+} \rightarrow D^0 \pi^+_{tag}$
- At $\sqrt{s} = 13 \text{ TeV}$ with $\mathcal{L} = 5.7 \text{ fb}^{-1}$
- 58M $D^0 \rightarrow K^+ K^-$, 18M $D^0 \rightarrow \pi^+ \pi^-$, purity ~ 95%

Residual combinatorial background subtracted using sidebands

5

PRD 104, 072010 (2021)

SEARCH FOR TIME-DEPENDENT CPV IN $D^0 ightarrow h^+h^-$ PRD 104, 072010 6

- Momentum-dependent detection asymmetries A_{det} based on magnet field polarity and charge of π_{tag}^{\pm}
- $A_{det} + A_{prod} \rightarrow D^0 / \overline{D}^0$ momentum asym.
- Trigger correlates D^0 decay time with kinematics $\rightarrow A_{det}(t), A_{prod}(t)$ become time-dependent
- Solution: equalize D^0 and \bar{D}^0 kinematics

Search for time-dependent CPV in $D^0 \rightarrow h^+h^-$

PRD 104, 072010 (2021)

7

$$\Delta Y_{K^+K^-} = (-2.3 \pm 1.5 \pm 0.3) \times 10^{-4} \quad \Delta Y_{\pi^+\pi^-} = (-4.0 \pm 2.8 \pm 0.4) \times 10^{-4}$$

• $\Delta Y_{K^+K^-}$ and $\Delta Y_{\pi^+\pi^-}$ agree withing 0.5σ

- Compatible with no CPV within 2σ

Search for time-dependent CPV in $D^0 \rightarrow h^+h^-$

PRD 104, 072010 (2021)

8

Source	$\Delta Y_{K^+K^-}[10^{-4}]$	$\Delta Y_{\pi^+\pi^-}[10^{-4}]$
Subtraction of the $m(D^0\pi^+_{tag})$ background	0.2	0.3
Flavour-dependent shift of D^* -mass peak	0.1	0.1
D^{*+} from <i>B</i> -meson decays	0.1	0.1
$m(h^+h^-)$ background	0.1	0.1
Kinematic weighting	0.1	0.1
Total systematic uncertainty	0.3	0.4
Statistical uncertainty	1.5	2.8

- Combinatorial background subtraction

Search for time-dependent CPV in $D^0 ightarrow h^+h^-$

- Previous world average $\Delta Y = (3.0 \pm 2.0 \pm 0.5) \times 10^{-4}$
- Precision improved by a factor of two
- Small systematic uncertainty → great prospects for future LHCb measurements

(σ approaching SM prediction $\mathcal{O}(10^{-5})$, LHCB-TDR-023-001)

Search for time-dependent CPV in $D^0 ightarrow h^+h^-$

$\Delta Y \; [10^{-4}]$

- Previous world average $\Delta Y = (3.0 \pm 2.0 \pm 0.5) \times 10^{-4}$
- Precision improved by a factor of two
- Small systematic uncertainty → great prospects for future LHCb measurements

(σ approaching SM prediction $\mathcal{O}(10^{-5})$, LHCB-TDR-023-001)

PRL 127, 111801 (2021)

- The Γ difference ($y \neq 0$) between neutral charm-meson eigenstates has been established in the past years (PRL 122, 011802 (2019), PRD 97, 031101 (2017), PLB 753 (2016), PRD 87, 012004 (2013))
- The mass difference ($x \neq 0$) has so far been elusive; the previous most precise measurement by LHCb reported $x_{CP} = (2.7 \pm 1.6) \times 10^{-3}$ (PRL 122, 231802 (2019)
- $D^{*+} \rightarrow D^0 \pi^+_{tag}$ $D^0 \rightarrow K^0_S \pi^+ \pi^-$
- $f = 54 \, \text{fb}^{-1}$
- 30.6M signal events
- Exploits multi-body final state; sensitive to mixing and CPV via time-dep. variations across phase-space

PRL 127, 111801 (2021) n^2 [GeV²/c⁴ signal per (4.5 MeV²/c⁴ LHCh 5.4 fb⁻¹ Rich resonant structure Many interfering amplitudes • $D^0 \xrightarrow{\text{DCS}} K^{*+} \pi^- \to K^0_{\text{S}} \pi^+ \pi^-$ 15 • $D^0 \xrightarrow{\text{mix}} \bar{D}^0 \xrightarrow{\text{CF}} K^{*+} \pi^- \to K^0_S \pi^+ \pi^-$ 10 • $D^0 \xrightarrow{\mathrm{CF}} K^{*-} \pi^+ \to K^0_{\mathrm{S}} \pi^+ \pi^-$ • $D^0 \xrightarrow{CP} K^0_{S} \rho^0 \to K^0_{S} \pi^+ \pi^-$ 0.5 0.5 15 2.5 m^2 [GeV²/ c^4] m^{2}_{-} [GeV²/ c^{4}] Absolute bin index 2.5 2 1.5

> 0.5 0.5

1.5

2.5 m_{\pm}^{2} [GeV²/ c^{4}]

 Dalitz plot divided into ± bins; strong-phase difference is \sim constant in each bin

•

 Strong-phases constrained using quantum-correlated $D^0 - \overline{D}^0$ pairs (CLEO [PRD 82, 112006 (2010)] and BES-III [PRD 101, 112002 (2020)] inputs)

Bin-flip method

- Measure a time-dep. ratio for each ± bin; "bin-flip" (PRD 99, 012007 (2019))
- Slightly lower sensitivity than amplitude analysis
- Model-independent & most detector effects cancel

$$R_{bj}^{\pm} \approx \frac{r_b + \sqrt{r_b} \operatorname{Re}[X_b^*(z_{CP} \pm \Delta z)] \langle t \rangle_j + \frac{1}{4} \left[|z_{CP} \pm \Delta z|^2 + r_b \operatorname{Re}(z_{CP}^2 - \Delta z^2)] \langle t^2 \rangle_j \right]}{1 + \sqrt{r_b} \operatorname{Re}[X_b(z_{CP} \pm \Delta z)] \langle t \rangle_j + \frac{1}{4} \left[\operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b |z_{CP} \pm \Delta z|^2 \right] \langle t^2 \rangle_j}$$

- b Dalitz bin, j time bin
- r_b ratio at t = 0

•
$$X_b = c_b - is_b$$

•
$$Z_{CP} = -y_{CP} - ix_{CP}, \Delta Z = -\Delta y - i\Delta x$$

At leading order

$$R_{bj}^{\pm} \approx r_b + \sqrt{r_b} \left[(1+r_b)(x_{CP} \pm \Delta x)c_b - (1-r_b)(y_{CP} \pm \Delta y)s_b \right] \langle t \rangle_j$$

- Ratios of ± bins
- Deviations from constant values due to mixing
- Red lines are fit projections where $x_{CP} \equiv 0 \rightarrow y_{CP}$ alone can't reproduce observation

 $\begin{aligned} x_{CP} &= (3.97 \pm 0.46 \pm 0.29) \times 10^{-3} \\ y_{CP} &= (4.59 \pm 1.20 \pm 0.85) \times 10^{-3} \end{aligned}$

 First measurement of non-zero x (> 7σ)

PRL 127, 111801 (2021)

- Difference of ratios for D^0 and \bar{D}^0
- No CPV observed (slope)

 $\Delta x = (0.27 \pm 0.18 \pm 0.01) \times 10^{-3}$ $\Delta y = (0.20 \pm 0.36 \pm 0.13) \times 10^{-3}$

• Limits on Δx significantly improved

Uncertainties

PRL 127, 111801 (2021)

Source	x_{CP}	y_{CP}	Δx	Δy
Reconstruction and selection	0.199	0.757	0.009	0.044
Secondary charm decays	0.208	0.154	0.001	0.002
Detection asymmetry	0.000	0.001	0.004	0.102
Mass-fit model	0.045	0.361	0.003	0.009
Total systematic uncertainty	0.291	0.852	0.010	0.110
Strong phase inputs	0.23	0.66	0.02	0.04
Detection asymmetry inputs	0.00	0.00	0.04	0.08

0.40

0.46

1.00

1.20

0.18

0.18

0.35

0.36

Trigger-induced efficiency correlations

Total statistical uncertainty

Statistical (w/o inputs)

- Possible bias due to charm from $B \rightarrow D$
- Inputs from CLEO and BES III; new strong-phase measurements from BES III of great interest for Run 3 measurement
- Especially Δx and Δy statistically dominated \rightarrow future improvement

PRL 127, 111801 (2021)

WA significantly improved for both mixing and CPV

- PRL 127, 111801 (2021)
- WA significantly improved for both mixing and CPV

- Very complementary with the $D^0 \rightarrow h^+h^-$ analysis
- Δx improvement shrinks uncertainty on diagonal
- Δy improvement shrinks uncertainty on diagonal

LHCB BEAUTY + CHARM COMBINATION

- "Simultaneous determination of CKM angle γ and charm mixing parameters" (arXiv:2110.02350)
- Provides the most precise determination of γ from a single experiment; $\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$; see talks by Anna, Arnau, and Fidan
- Improves the precision on y by a factor of two w.r.t. the current WA!
- $y = (0.630^{+0.033}_{-0.030})\%$

SUMMARY

- LHCb collected the largest sample of charm decays; leading to new world-best measurements
 - Time-integrated CP asymmetries (including **channels with neutrals**; see Andrea Contu's talk)
 - Time-dependent CP asymmetries and mixing parameters (including first observation of a mass difference between neutral D mass eigenstates)

FUTURE

- More interesting Run 2 analyses in the pipeline
 - y_{CP} from $D^0 \rightarrow h^+ h^-$
 - *x*, *y* from semi-leptonic $D^0 \to K_S \pi \pi$
 - Time-dep amplitude analysis of $D^0 \to K_S \pi \pi$
 - Update WS/RS(t) measurement of $D^0 \rightarrow K\pi$ with full Run2 sample
- Other approaches under investigation
 - Four-body final states
 - ...
- Precision of the measurements is mostly limited by statistics \rightarrow improvement expected
- Run 3 (starting next year) higher luminosity, upgraded trigger and detector

THANK YOU!

SIMULTANEOUS γ and Charm

- Improvement on y driven almost entirely by $\delta_D^{K\pi}$ from beauty
- Correlation of $\delta_D^{K\pi}$ and $\delta_{B^{\pm}}^{DK^{\pm}}$ is $-57\% \rightarrow B^{\pm} \rightarrow DK^{\pm}$ dominates

$\Delta Y_{K\pi}$ Validation

• $\Delta Y_{K\pi} = (0.4 \pm 0.5 \text{ (stat)} \pm 0.2 \text{ (syst)}) \times 10^{-4}$

• From global fit: $|\Delta Y_{K\pi}| < 0.3 \times 10^{-4}$ at 90% CL