WG 7 Summary Mixing and CP Violation in the D system Adam Davis and Cheng-Wei Chiang 26th of November, 2021 ### **The Conveners** Only one internet gremlin "Strange things happen in full screen mode" Thank you very much to the organizers and all the speakers! Source: Wikimedia Commons # **Disclaimer** This is an overview All positive comments go directly to the speakers of the session All negative go directly to us # **Challenges in Charm System** - Charm quark scale (~1.3 GeV) - too light to have good heavy quark expansions - too heavy for chiral perturbation expansions - nonperturbative strong interaction coupling - many nearby hadronic resonances for rescattering effects - o high precision calculations of Δm_D , $\Delta \Gamma_D$, strong phases, etc still theoretically challenging ### Resort to - flavor SU(3) symmetry (particularly strong phases) - Phenomenological assumptions (LD effects) - inclusion of symmetry breaking effects - higher-order calculations (particularly in mixing) - o ... # Mixing and CPV in the D system Time-Dependent CP Asymmetry $$A_{CP}(f(t)) = \frac{\Gamma\left(D^0 \to f(t)\right) - \Gamma\left(\bar{D}^0 \to f(t)\right)}{\Gamma\left(D^0 \to f(t)\right) + \Gamma\left(\bar{D}^0 \to f(t)\right)}$$ Time-Integrated CP Asymmetry $$A_{CP}(f) = a_{CP}^{dir}(f) + \frac{\langle t \rangle}{\tau} a_{CP}^{ind}(f)$$ - Short-distance contributions within SM predict CPA of $\lesssim \mathcal{O}(10^{-4})$ - long-distance rescattering effects to be included # Mixing and CPV in the D system • Mass eigenstates \neq Flavour Eigenstates \rightarrow Mixing! $$|D_{12} angle = p|D^0 angle \pm q|\overline{D}^0 angle$$ Redefine in terms of effective Hamiltonian $$egin{aligned} \hat{H} &= \mathbf{M} - i \mathbf{\Gamma} & i \hbar rac{d}{dt} inom{\ket{D^0(t)}}{\ket{ar{D}^0(t)}} = \hat{H} inom{\ket{D^0(t)}}{\ket{ar{D}^0(t)}} \ x &= rac{\Delta M}{\Gamma}, y = rac{\Delta \Gamma}{2\Gamma} & ar{A_f} &= \langle f | H | D^0 angle \ x &= \left| rac{q}{p} \right| e^{i \phi} & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D}^0 angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & ar{A_{ar{f}}} &= \langle ar{f} | H | ar{D_0} angle \ & A_{ar{f}} \ & A_{ar{f}} &= \langle ar{f} | H | ar{A_{ar{f}}} \ & A_{ar{f}} A_{ar{$$ # Direct CPV ### Bonza! ### Andrea Contu $$\Delta A_{CP} = A_{CP}(KK) - A_{CP}(\pi\pi) = (-15.4 \pm 2.9) imes 10^{-4}$$ ### Bonza! ### Andrea Contu $$\Delta A_{CP} = A_{CP}(KK) - A_{CP}(\pi\pi) = (-15.4 \pm 2.9) imes 10^{-4}$$ # **Progress on Theory** - Topological amplitude analysis (<u>Hai-Yang Cheng</u>) - o include SU(3)_E breaking effects from CF to SCS/DCS modes - include SD penguin amplitudes using QCDF (rescattering effects) - invoke LD rescattering to penguin-exchange amplitude - Also look into VP decays and identify six golden modes to test theory - Analogous to the PP case, predict CPA difference: $$a_{CP}(K^+K^{*-}) - a_{CP}(\pi^+\rho^-) = (-1.61 \pm 0.33) \times 10^{-3}$$ - Dalitz analysis of local CPAs in 3-body D decays can provide more info - Also account for SU(3)_F breaking with final state interactions and shifts to amplitudes fits to BFs allow for predictions of DCPV (<u>Ayan Paul</u>) - Correlations stem from rescattering | $A_{\rm CP} (D^0)$ | $(\mu \pm c)$ | r) (%) | $A_{CP} (D_{(s)}^+)$ | $(\mu \pm c)$ | 7) (%) | |-----------------------|-----------------------------|------------------------------|-----------------------|----------------------------|------------------------------| | $A_{CP}(D)$ | $\delta_i \to -\mathrm{ve}$ | $\delta_i \to + \mathrm{ve}$ | $ACP(D_{(s)})$ | $\delta_i \rightarrow -ve$ | $\delta_i \to + \mathrm{ve}$ | | $D^0 o \pi^+\pi^-$ | 0.117 ± 0.020 | 0.118 ± 0.020 | $D^+ \to K^+ K_S$ | -0.028 ± 0.005 | -0.026 ± 0.005 | | $D^0 \to \pi^0 \pi^0$ | 0.004 ± 0.009 | 0.079 ± 0.010 | $D_s^+ \to \pi^+ K_S$ | -0.040 ± 0.007 | -0.036 ± 0.007 | | $D^0 \to K^+K^-$ | -0.047 ± 0.008 | -0.046 ± 0.008 | $D_s^+ \to \pi^0 K^+$ | 0.048 ± 0.006 | -0.003 ± 0.004 | | $D^0 \to K_S K_S$ | 0.043 ± 0.007 | 0.038 ± 0.007 | | | | # Progress on Theory (2) - Look further into testing O(1) rescattering effects using $\Delta U=0$ with $D^0 \rightarrow V^{\pm}P^{\mp} \rightarrow P^{\pm}P^0$ P^{\mp} (Avital Dery) - Assumptions: Production/Detection asymmetry constant across Dalitz Plot - 7 parameters to describe $D^0 \rightarrow \rho^{\pm} \pi^{\mp} \rightarrow \pi^{+} \pi^{-} \pi^{0}$, 7 points on Dalitz plot enough - Additional analogue to DACP using $K^* \pi$ and $\rho^{\pm} \pi^{\mp}$? Pseudo 2-body decays have exact U-spin correspondence, but 3-body final states are not related by full d↔s interchange - Effects of finite width of ρ^{\pm} included (Hai-Yang Cheng) - How to associate meaningfully two points on different Dalitz plots? - Discussion focused on what's reasonable for experimental measurements $s_{\pi^+\pi^0}(\text{GeV}^2)$ # **Experimental Pushes** <u>Belle</u> Long-Ke Li $$A_{CP}(D^0 \to \pi^+\pi^-\eta) = [0.9 \pm 1.2 \, ({ m stat}) \pm 0.5 \, ({ m syst})]\%,$$ $A_{CP}(D^0 \to K^+K^-\eta) = [-1.4 \pm 3.3 \, ({ m stat}) \pm 1.1 \, ({ m syst})]\%,$ $A_{CP}(D^0 \to \phi\eta) = [-1.9 \pm 4.4 \, ({ m stat}) \pm 0.6 \, ({ m syst})]\%,$ | Decay mode | $A_{\rm raw}$ | ACP | |--------------------------------------|--------------------|------------------------------| | $D_s^+ o K^+ \pi^0$ | 0.115 ± 0.045 | $0.064 \pm 0.044 \pm 0.011$ | | $D_s^+ o K^+ \eta_{\gamma\gamma}$ | 0.046 ± 0.027 | $0.040 \pm 0.027 \pm 0.005$ | | $D_s^+ o K^+ \eta_{3\pi}$ | -0.011 ± 0.033 | $-0.008 \pm 0.034 \pm 0.008$ | | $D_s^+ o K^+ \eta$ | | $0.021 \pm 0.021 \pm 0.004$ | | $D_s^+ o \pi^+ \eta_{\gamma\gamma}$ | 0.007 ± 0.004 | $0.002 \pm 0.004 \pm 0.003$ | | $D_s^+ o \pi^+ \eta_{3\pi}$ | 0.008 ± 0.006 | $0.002 \pm 0.006 \pm 0.003$ | | $D_s^+ o \pi^+ \eta$ | <u> </u> | $0.002 \pm 0.003 \pm 0.003$ | | $D_s^+ o \phi \pi^+$ | 0.002 ± 0.001 | H | ### <u>LHCb</u> Andrea Contu $$A_{CP}(D^0 \rightarrow K_S^0 K_S^0) = (-3.1 \pm 1.2 \text{ (stat.)} \pm 0.4 \text{ (syst.)} \pm 0.2 \text{ (}A_{CP}(D^0 \rightarrow KK)\text{)})$$ Measurements First ### BESIII ### Jim Libby • Surprises happen e.g. doubly Cabibbo suppressed branching fraction for $D^+ \to K^+ \pi^+ \pi^- \pi^0$ [PRL **125** (2020) 14180] $$B(D^+ \to K^+ \pi^+ \pi^- \pi^0) = (6.28 \pm 0.52) \times \tan^4 \theta_C \times B(D^+ \to K^- \pi^+ \pi^+ \pi^0)$$ • $A_{CP} = -0.04 \pm 0.06 \text{ (stat)} \pm 0.01 \text{ (syst)}$ 14 BFs of 3- & 4-body D decays with η in final state \rightarrow no significant ACP, precision 1-5% # **Push to Rare Decays** ### Marcel Golz - Devise null tests in non-resonance regions to constrain WC's from EFT approach - E.g. A_{FR} vs q^2 of $Ds \rightarrow K \mu \mu$ - E.g. Lepton non-universality possibly at O(1 100) - Plenty of opportunities in mesonic/baryonic modes Leverage φ region to control strong phases for A_{CP} vs q² "Turn a bug into a feature" Mixing and Indirect CPV ## Bonza ### Daniel Červenkov $$\Delta x = (-0.27 \pm 0.18(ext{stat}) \pm 0.01(ext{syst})) imes 10^{-3} \hspace{0.5cm} x_{CP} = (3.97 \pm 0.46(ext{stat}) \pm 0.29(ext{syst})) imes 10^{-3} \ \Delta y = (0.20 \pm 0.36(ext{stat}) \pm 0.13(ext{syst})) imes 10^{-3} \hspace{0.5cm} y_{CP} = (4.59 \pm 1.20(ext{stat}) \pm 0.85(ext{syst})) imes 10^{-3}$$ $$R_{bj}^{\pm} \approx \frac{r_b + \sqrt{r_b} \operatorname{Re} \left[X_b^* (z_{CP} \pm \Delta z) \right] \langle t \rangle_j + \frac{1}{4} \left[|z_{CP} \pm \Delta z|^2 + r_b \operatorname{Re} (z_{CP}^2 - \Delta z^2) \right] \langle t^2 \rangle_j}{1 + \sqrt{r_b} \operatorname{Re} \left[X_b (z_{CP} \pm \Delta z) \right] \langle t \rangle_j + \frac{1}{4} \left[\operatorname{Re} (z_{CP}^2 - \Delta z^2) + r_b |z_{CP} \pm \Delta z|^2 \right] \langle t^2 \rangle_j}$$ $z_{CP} = -y_{CP} - ix_{CP}, \Delta z = -\Delta y - i\Delta x$ ### BES III Jim Libby # **Exploit Synergies** - One vital input to Ks $\pi\pi$ bin flip is strong phase differences c_i and s_i - Also crucial for extraction of γ/ϕ_3 - Discussion point What binning is the best? Current binning is driven by γ/ϕ_3 , are there better binnings? As Statistically limited, there is no limitation on the BESIII side - Other measurements as well - coherence factors in K 3π and K $\pi\pi^0$ - \circ $\delta_{\mathsf{K}\pi}$ - Other modes to look at? ## More experimental results! ### <u>LHCb</u> Daniel Červenkov $$\Delta Y_{K^+K^-} = (-2.3 \pm 1.5 \pm 0.3) \times 10^{-4}$$ $\Delta Y_{\pi^+\pi^-} = (-4.0 \pm 2.8 \pm 0.4) \times 10^{-4}$ - LHCb continues to exploit their large sample of Charm - Belle II has made new precision measurements of the D⁰/D⁺ lifetime → TDCPV measurements ready, only awaiting integration of luminosity $410.5 \pm 1.1 \pm 0.8 \text{ fs}$ $\tau(D^+) = 1030.4 \pm 4.7 \pm 3.1 \text{ fs}$ $\tau(D^+)/\tau(D^+) = 2.510 \pm 0.015$ (accounted for correlated systematic uncertainties) A Bigger Picture ## **Pushes on Theory** ### Jason Aebischer - Concentrate on M₁₂ in this work - Use SMEFT to evaluate bounds on new physics contributions - Master formula in WET (2 loop QCD running)/SMEFT (1 loop SMEFT-WET matching) done - Leads to mixing between up/down bases should consider simultaneously ### Maria Laura Piscopo Use HQE to explore charm lifetimes and hence Γ_{12} - HQE Fails for charm mixing, but OK for lifetimes? - Need further inclusive D-> X ell nu measurements to help constrain - NLLO-QCD corrections at d=6, Higher power corrections coming - Long discussion on negative lifetime prediction which is not present in ratios # Pushes on Theory (2) ### Hiroyuki Umeeda - Exclusive approach to Γ_{12} generally unsatisfactory and relying on data inputs - Investigate Quark-Hadron duality violation in 't Hooft's model using a resonance-based method - $\Delta\Gamma_D$ enhanced by more than O(10³) confirmed for the range of 0.14<m_s/ β <0.25, if the phase space function is given by 4D-like one. - Analogous calculation of Δm_D still missing points: based only on the 4D-like phase space crosses: based on the 4D-like phase space + 2D-specific one ## **Global Fits** No mixing point (x,y) = (0,0): $\Delta x^2 = 2099$, excluded at $\gg 11.5\sigma$ Using new description from Kagan/Silvestrini, fit separately for absorptive and dispersive phases **HFLAV** Alan Schwartz HFLAV No CPV point $(|q/p|, \varphi) = (1,0)$: $\Delta x^2 = 5.633$, excluded at 1.6 σ ### <u>LHCb</u> Daniel Červenkov Is the future to fit B+D simultaneously for ultimate precision? What about K? # **Summary of the Summary** Charm is even more charming than before Direct CPV established $x>0 @ >8 \sigma$ There are many new results in the pipeline on both theory and experimental side Barely touched on baryons in this workshop Watch this space # **Backup** | Parameter | No CPV | No direct CPV | CPV-allowed | CPV-allowed | |------------------------|------------------------|-----------------------------|------------------------------|-----------------| | | | in DCS decays | | 95% CL Interval | | x (%) | $0.44^{+0.13}_{-0.15}$ | 0.409 ± 0.048 | $0.409^{+0.048}_{-0.049}$ | [0.313, 0.503] | | y~(%) | 0.63 ± 0.07 | $0.603{}^{+0.057}_{-0.056}$ | $0.615 \ ^{+0.056}_{-0.055}$ | [0.509,0.725] | | $\delta_{K\pi}$ (°) | $8.9^{+8.9}_{-9.8}$ | $5.5^{+8.3}_{-9.9}$ | $7.2^{+7.9}_{-9.2}$ | [-12.6,21.8] | | $R_D~(\%)$ | 0.344 ± 0.002 | 0.343 ± 0.002 | 0.343 ± 0.002 | [0.340,0.347] | | A_D (%) | - | - | -0.70 ± 0.36 | [-1.40,0.00] | | q/p | _ | 1.005 ± 0.007 | 0.995 ± 0.016 | [0.96, 1.03] | | φ (°) | y - | $-0.18^{+0.28}_{-0.29}$ | -2.5 ± 1.2 | [-4.91, -0.19] | | $\delta_{K\pi\pi}$ (°) | $21.8^{+23.5}_{-23.9}$ | $22.3{}^{+21.9}_{-23.0}$ | $23.0{}^{+21.8}_{-22.9}$ | [-22.6,64.9] | | $A_{\pi}(\%)$ | _ | 0.027 ± 0.137 | 0.045 ± 0.137 | [-0.22,0.31] | | $A_K(\%)$ | - | -0.133 ± 0.136 | -0.113 ± 0.137 | [-0.38, 0.15] | | x_{12} (%) | _ | 0.409 ± 0.048 | | [0.314, 0.503] | | $y_{12}~(\%)$ | - | $0.603^{+0.057}_{-0.056}$ | | [0.495,0.715] | | $\phi_{12}(^{\circ})$ | _ | $0.58^{+0.91}_{-0.90}$ | | [-1.20, 2.42] | | $\chi^2/{ m d.o.f.}$ | 98.68/52 = 1.90 | 66.27/53 = 1.25 | 63.64/51 = 1.25 | |