11th International Workshop on the CKM Unitary Triangle (CKM 2021) 21-26 November 2021

Rare D decays at LHCb Davide Brundu on behalf of the LHCb Collaboration

BROR

Istituto Nazionale di Fisica Nucleare

Outline

- Introduction to rare charm decays
- •Rare charm decays in LHCb
- Most recent LHCb measurements
 - Search for 25 rare and forbidden decays of D^+ and D_s^+ [JHEP 06 44 (2021)]

• Angular analysis and search for CP violation in $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ ($h = K, \pi$) arXiv:2111.03327 [hep-ex]

Why study rare charm decays?

- •Unique probe: FCNC $|\Delta c| = 1$ transitions are unique probes in up-type quark sector, complementary to studies in K and B decays.
- Promising discovery tool:
 - Extremely suppressed rates ~ $\mathcal{O}(10^{-10})$ (no tree level, GIM suppressed),
 - Negligible CP asymmetries (CKM suppressed),
 - Well known angular distributions (e.g. no lepton axial-vector couplings).
 - Short-distance branching fractions potentially enhanced up to $\mathcal{O}(10^{-7})$,
 - CP asymmetries potentially up to few %,
 - Modified angular distributions.
- •Challenging: large resonant contributions, difficult to obtain precise theoretical predictions. Experimentally: need large charm samples and control over fully hadronic backgrounds.

[MPLA 36 (2021) 2130002]

Spectrum of rare charm decays

Wide scale of rates, from forbidden to not-so-rare decays. Branching fractions dominated by long-distance contributions.

$$D^{0} \rightarrow \mu^{+}e^{-}$$
$$D^{0} \rightarrow pe^{-}$$
$$D^{+}_{(s)} \rightarrow h^{+}\mu^{+}e^{-}$$

$D^{0} \rightarrow \mu^{+}e^{-}$ $D^{0} \rightarrow pe^{-}$ $D^{+}_{(s)} \rightarrow h^{+}\mu^{+}e^{-}$					I	$D^{+}_{(s)} \rightarrow D^{+}_{(s)} \rightarrow D^{0} \rightarrow K^{-} \pi$ $D^{0} \rightarrow K^{-} \pi$	$\pi^{+}l^{+}l^{-}$ $K^{+}l^{+}l^{-}$ $T^{+}l^{+}l^{-}$ $T^{*0}l^{+}l^{-}$		$D^{0} \rightarrow D^{0} \rightarrow D^{0} \rightarrow D^{0} \rightarrow D^{0} \rightarrow D^{0} \rightarrow Q^{0}$	$\pi^{-}\pi^{+}V(-$ $\rho V(\rightarrow K^{+}K^{-}V(-)$ $\psi V(\rightarrow R^{+}K^{-}V(-)$	→ II) (II) (→ II) II)	$D^{0} \rightarrow D^{0} \rightarrow D^{0$	≽ K ^{*0} γ >,ω) γ (→ ll)
LFV, LNV,	BNV			FC	NC				VMD	F	Radi	ative	
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	
$D^+_{(s)} \to h^- l^+ l^+$ $D^0 \to X^0 \mu^+ e^-$ $D^0 \to X^{} l^+ l^+$			D ⁰	D^0 $\rightarrow ee$	$\rightarrow \mu\mu$	$D^{0} \to \pi$ $D^{0} \to \rho$ $D^{0} \to K^{T}$ $D^{0} \to \phi$	$\pi^{+}l^{+}l^{-}$ $l^{+}l^{-}$ $K^{-}l^{+}l^{-}$ $l^{+}l^{-}$	$D^{0} \rightarrow D^{0} \rightarrow D^{0$	K ⁺ π [−] V(· K ^{*0} V(→ γγ	$\rightarrow ll) D'$ $ll) D'$ D'	$^{+} \rightarrow \pi^{+}$ $^{0} \rightarrow K^{-}$ $^{0} \rightarrow K^{*(0)}$	$\phi(\rightarrow ll)$ $\pi^+ V(\rightarrow ll)$ $V(\rightarrow ll)$	

Difficult to search for NP effects in the branching fractions, more promising strategies are: • Exploit exact symmetries with search for forbidden decays,

• Exploit approximate symmetries with clean SM null-tests in long-distance dominated decays.

Charm rare decays in LHCb

- Large sample of $c\bar{c}$ in LHCb, $N(c\bar{c}) > 10^{13}$,

$$\begin{split} D^+_{(s)} &\to h^- \ell^+ \ell^+ \\ D^0 &\to p e^- \\ D^0 &\to \ell^\pm \ell^{'\mp} \\ D^+_{(s)} &\to h^+ \mu^+ \mu^- \end{split} \qquad D^0 &\to \end{split}$$

$D^0 \rightarrow pe^-$						Λ_c^+	$\rightarrow p\mu^+$	u [_]		$D^0 \rightarrow$	$K^{-}\pi^{+}V$	$V(\mu^+\mu^-)$	
$D^0 \to \ell^{\pm} \ell^{\prime \mp}$						D^0	$\rightarrow h^+h^-$	$\ell^+\ell^-$	$D^0 \rightarrow$	K^+K^-	$V(\mu^+\mu^-)$		
$D^+_{(s)} \rightarrow h^+ \mu^+ \mu^-$				D^0	$\rightarrow \mu^+ \mu^-$	$- D^{+}_{(s)}$	$h_{0} \rightarrow h^{+}\ell$	$\rho^+\ell^-$	$D^0 \rightarrow$	$\pi^+\pi^- V$	$V(\mu^+\mu^-)$		
LFV, LNV,	BNV			FC	NC				VMD	F	Radia	tive	
0	10-15	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	

Search for NP in branching fractions

•	search for $D^0 ightarrow \mu^+ \mu^-$	[PLB 725 15-24 (2013)]
•	search for $D^+_{(s)} \to h^+ \ell^+ \ell^-$	[PLB 724 203-212 (2013)], [JHEP 06 44 (2021)]
•	search for $D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	[PLB 728 234-243 (2014)]
•	observation of $D^0 o K^- \pi^+ \mu$	$\mu^+\mu^-$ [PLB 757 558-567 (2016)]
•	search for $\Lambda_c^+ \to p \mu^+ \mu^-$	[PRD 97 091101 (2018)]
•	observation of $D^0 \rightarrow h^+ h^- \mu$	$\mu^+\mu^-$ [PRL 119 181805 (2017)]

• Excellent vertexing, tracking and identification. LHCb focused mostly on final states with 2 muons.

Search for NP based on symmetries

• search for $D^0 \rightarrow \mu^+ e^-$	[PLB 754 167
• search for $D^+_{(s)} \to h^- \ell^+ \ell^{'+}$	[JHEP 06 4
 search for CPV and angular 	
asymmetries in $D^0 ightarrow h^+ h^- \mu^+ \mu^-$	[PRL 121 09180 ⁻
 full angular analysis and 	
search for CPV in $D^0 ightarrow h^+ h^- \mu^+ \mu^-$	arXiv:2111.03327

Charm rare decays in LHCb

- Large sample of $c\bar{c}$ in LHCb, $N(c\bar{c}) > 10^{13}$,

$$\begin{split} D^+_{(s)} &\to h^- \ell^+ \ell^+ \\ D^0 &\to p e^- \\ D^0 &\to \ell^\pm \ell^{'\mp} \\ D^+_{(s)} &\to h^+ \mu^+ \mu^- \end{split} \qquad D^0 &\to \end{split}$$

$D^{0} \rightarrow pe^{-}$ $D^{0} \rightarrow \ell^{\pm} \ell^{'\mp}$ $D^{+}_{(s)} \rightarrow h^{+} \mu^{+} \mu^{-}$	$D^0 o \mu^+ \mu^-$	$\begin{split} \Lambda_c^+ &\to p \mu^+ \mu^- \\ D^0 &\to h^+ h^- \ell^+ \ell^- \\ D_{(s)}^+ &\to h^+ \ell^+ \ell^- \end{split}$	$D^{0} \to K^{-}\pi^{+} V(\mu^{+}\mu^{-})$ $D^{0} \to K^{+}K^{-} V(\mu^{+}\mu^{-})$ $D^{0} \to \pi^{+}\pi^{-} V(\mu^{+}\mu^{-})$	
LFV, LNV, BNV	FCNC	V	MD Radiative	
0 10 ⁻¹⁵ 10 ⁻¹⁴	10 ⁻¹³ 10 ⁻¹² 10 ⁻¹¹ 1	0 ⁻¹⁰ 10 ⁻⁹ 10 ⁻⁸ 1	0 ⁻⁷ 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴	
for NP in branching fraction	ons	Search for NP	based on symmetries	
for $D^0 \rightarrow \mu^+ \mu^-$ for $D^+_{(s)} \rightarrow h^+ \ell^+ \ell^-$	[PLB 725 15-24 (2013)] [JHEP 06 44 (2021)]	• search for D^0 – • <u>search for $D^+_{(s)}$</u>	$ \mu^{+}e^{-} \qquad \text{[PLB} \\ \rightarrow h^{-}\ell^{+}\ell^{'+} \qquad \text{[JF]} $	3 754 16 1ep 06
for $D^0 \to \pi^+ \pi^- \mu^+ \mu^-$ vation of $D^0 \to K^- \pi^+ \mu^+ \mu^-$ of for $\Lambda_c^+ \to p \mu^+ \mu^-$	[PLB 728 234-243 (2014)] [PLB 757 558-567 (2016)] [PRD 97 091101 (2018)]	 search for CPV a asymmetries in <i>I</i> full angular ana 	angular $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ [PRL 12 [ysis and]	1 0918
vation of $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$	[PRL 119 181805 (2017)]	search for CPV	$\frac{\text{in } D^0 \rightarrow h^+ h^- \mu^+ \mu^-}{\text{arXiv:211}}$	1.0332

Search

- search <u>search</u>
- search
- observ
- search
- observ

• Excellent vertexing, tracking and identification. LHCb focused mostly on final states with 2 muons.

Searches for 25 rare and forbidden decays of D^+ and D_s^+

LHCB-PAPER-2020-007 - [JHEP 06 44 (2021)]

Allowed in the standard model

From C.Burr presentation at ICHEP 2020 in Prague

 $\begin{array}{ll} \rightarrow K^{+}e^{+}e^{-} & D_{s}^{+} \rightarrow \pi^{+}e^{+}\mu^{-} & D_{s}^{+} \rightarrow K^{+}\mu^{+}e^{-} \\ \rightarrow \pi^{+}\mu^{+}\mu^{-} & D_{s}^{+} \rightarrow \pi^{+}e^{+}e^{-} & D_{s}^{+} \rightarrow K^{-}\mu^{+}e^{+} \\ \rightarrow \pi^{-}\mu^{+}\mu^{+} & D_{s}^{+} \rightarrow \pi^{-}e^{+}e^{+} & D_{s}^{+} \rightarrow K^{+}e^{+}\mu^{-} \\ \rightarrow \pi^{+}\mu^{+}e^{-} & D_{s}^{+} \rightarrow K^{+}\mu^{+}\mu^{-} & D_{s}^{+} \rightarrow K^{+}e^{+}e^{-} \\ \rightarrow \pi^{-}\mu^{+}e^{+} & D_{s}^{+} \rightarrow K^{-}\mu^{+}\mu^{+} & D_{s}^{+} \rightarrow K^{-}e^{+}e^{+} \end{array}$

Effectively forbidden in the standard model

Predictions for rare and forbidden decays of D^+ and D_s^+

- Predictions for $D^+_{(s)}$ forbidden and rare semileptonic decays [EPJC, Vol.80, 65 (2020)],
- Wide range of rates for SM-forbidden decays $(10^{-11} - 10^{-8})$, depending on the NP model.
- For non-forbidden decays, resonant SM highly dominates the decay rate. NP enhancements are possible far away, especially in high $m(\ell^+\ell^-)$.

Searches for 25 rare and forbidden decays of D^+ and D_s^+

- Analysis performed using 2016 dataset, corresponding to 1.7 fb⁻¹. • Di-muon mass regions corresponding to η and ρ/ω are vetoed. $D^+_{(s)} \to (\phi \to \ell^+ \ell^-) \pi^+$ used as normalisation.
- Signal is extracted by fitting the three body invariant mass,
 - PID selection to suppress the mis-identified background due to hadronic decays.

[JHEP 06 44 (2021)]

Searches for 25 rare and forbidden decays of D^+ and $D^+_{ m s}$

Searches for 25 rare and forbidden decays of D^+ and D_{c}^+

- All results are consistent with the background-only hypothesis,
- Limits on BFs improved by more than 1 order of magnitude (up to a factor of 500).

[JHEP 06 44 (2021)]

Angular analysis of $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$ decays and search for CP violation

LHCB-PAPER-2021-035 - arXiv:2111.03327 [hep-ex]

Presented for the first time by D.Mitzel at 11th workshop on "Implications of LHCb measurements and future prospects"

$D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ rare decays

• Final state observed by LHCb (rarest charm meson decay observed), compatible with SM [PRL 119 (2017) 181805], [JHEP 04 (2013) 135]

$$\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) \sim 9.6 \times 10^{-7}$$

$$\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) \sim 1.5 \times 10^{-7}$$

- Dominated by resonant contributions in h^+h^- and $\mu^+\mu^-$ systems (mainly ρ/ω and ϕ).
- Analysis performed using 2011-2018 dataset, corresponding to 9 fb⁻¹.
- D^0 selected from $D^{*+} \rightarrow D^0 \pi^+$ decay ("prompt charm"): well identified kaons/pions and muons forming a displaced secondary vertex, paired with a low-momentum pion D^{*+} to form a D^{*+} vertex. primary vertex

arXiv:2111.03327

$$\langle I_{2,3,6,9} \rangle(q^2) = \frac{1}{\Gamma} \int_{4m_h}^{p_{max}^2} dp^2 \int_{-1}^{+1} d\cos\theta_h \ I_{2,3,6,9}$$

$$\langle I_{4,5,7,8} \rangle(q^2) = \frac{1}{\Gamma} \int_{4m_h}^{p_{max}^2} dp^2 \left[\int_{-1}^{0} d\cos\theta_h - \int_{0}^{+1} d\cos\theta_h \right] I_{4,5,7,8} \longrightarrow \text{Optimal integration of } \cos\theta_h \text{ giving transformed on } p \text{-Wave contributions in } h^+h^- \text{ system}$$

$D^{0} \rightarrow h^{+}h^{-}\mu^{+}\mu^{-}$ angular observables

• Coefficients determined independently as differences of the decay rate, with specific integration of the angular variables ("angular tag"), e.g. for $I_6 \propto A_{FB}$:

$$\langle I_6 \rangle = \frac{\Gamma(\cos \theta_{\mu} > 0) - \Gamma(\cos \theta_{\mu} < 0)}{\Gamma(\cos \theta_{\mu} > 0) + \Gamma(\cos \theta_{\mu} < 0)}$$

• Measured separately for D^0 and \overline{D}^0 , thus flavour-averaged $\langle S_i \rangle$ and CP asymmetries $\langle A_i \rangle$ can be obtained as $\langle S_i \rangle = \frac{1}{2} [\langle I_i \rangle + \langle I_i \rangle] \quad \langle A_i \rangle = \frac{1}{2} [\langle I_i \rangle - \langle I_i \rangle]$

for CP-even (CP-odd) coefficients.

• Access the q^2 dependence by measuring in q^2 regions:

			$m(\mu$	$(\mu^+\mu^-)$ [Me	V/c^2]
Decay mode	low mass	η	$ ho_{/}$	ω	
$D^0 \to K^+ K^- \mu^+ \mu^-$	< 525	525-565 (NS)	> 5	565	
$D^0 \to \pi^+ \pi^- \mu^+ \mu^-$	< 525	525-565 (NS)	565-780	780-950	950-10

NS = No signal

•
$$\langle I_6 \rangle = \frac{N(\cos \theta_\mu > 0) - N(\cos \theta_\mu < 0)}{N(\cos \theta_\mu > 0) + N(\cos \theta_\mu < 0)}$$

Angular analysis strategy

- 16 angular observables (per decay mode, per q^2 region).
- 12 SM-null tests: $\langle S_{5,6,7} \rangle_{SM} = 0 \qquad \langle A_{2-9} \rangle_{SM} = 0$
- Correction of acceptance / reconstruction / selection effect across the 5D phase space, by reweighing the D^0 candidates.
- Signal yields extracted by fitting the D^0 invariant mass, splitting by the flavor and angular tag.
- Analysis limited by statistics: systematic uncertainties are typically between 10% and 50% of the statistical one. Main important sources are:
 - Choice of the D^0 invariant mass fitting model,
 - Acceptance correction method.

arXiv:2111.03327

Updated measurement of A_{CP}

• CP asymmetry is measured with a similar strategy, splitting by flavour categories:

$$A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}^0 \to h^+ h^- \mu^+ \mu^-)}$$

 Need correction for nuisance asymmetries

A sample of $D^{*+} \rightarrow D^0(\rightarrow K^+K^-) \pi^+$ decay and an independent measurement of A_{CP} are used to subtract the nuisance asymmetries.

• The mass model used in the fit is the main systematic uncertainty.

$$A_{CP}^{raw} = \frac{N(D^0 \to h^+ h^- \mu^+ \mu^-) - N(\overline{D}^0 \to h^+ h^- \mu^+ \mu^-)}{N(D^0 \to h^+ h^- \mu^+ \mu^-) + N(\overline{D}^0 \to h^+ h^- \mu^+ \mu^-)}$$

$$A_{CP}^{raw} \simeq A_{CP} + A_D + A_P$$
Pasymmetry
to measure
Detection asymmetry
of tagging particle (π^+)
Production
asymmetry of tagging particle (π^+)

Results for angular observables $\langle S_i \rangle$

SM null tests observables $\langle S_{5,6,7} \rangle$ in the di-muon mass regions.

All in agreement with SM predictions

[JHEP 04 135 (2013)] [PRD 98 03504 (2018)]

Results for angular observables $\langle A_i \rangle$

arXiv:2111.03327

CP asymmetries $\langle A_{6,8,9} \rangle$ in the di-muon mass regions.

All in agreement with SM predictions

[JHEP 04 135 (2013)] [PRD 98 03504 (2018)]

A_{CP} and final remarks on $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

- CP asymmetry A_{CP} in the di-muon mass regions. Consistent with SM.
- Overall agreement with respect to SM predictions computed for A_{CP} , $\langle A_{2-9} \rangle$, $\langle S_{5.6.7} \rangle$

arXiv:2111.03327

$m(\mu^+\mu^-)$	A_{CP} [%]
$[MeV/c^2]$	
D ⁰ –	$\rightarrow \pi^+\pi^-\mu^+\mu^-$
< 525	$28 \pm 13 \pm 1$
525 - 565	
565 - 780	$-2.7 \pm 4.1 \pm 0$
780 - 950	$-1.9\pm5.8\pm0$
950 - 1020	$0.5\pm3.7\pm0$
1020 - 1100	$4.2\pm3.4\pm0$
> 1100	
Full range	$2.9\pm2.1\pm0$
$D 0 \rightarrow$	$K^+K^-\mu^+\mu^-$
< 525	$4\pm15\pm1$
525 - 565	
> 565	$-2.5\pm6.8\pm0$
Full range	$-2.3 \pm 6.3 \pm 0$

Conclusions

- Steady progress over the years. When probing rates of $\sim 10^{-8}$ we are getting closer the SM regime. Thus rare charm decays is proving itself to be a unique and complementary probe in the field.
- LHCb has collected the largest charm sample and counts many important results:
 - Many world's best measurements,
 - Rarest charm meson decay observed to date,
 - First full angular analysis in a rare charm decay ever performed.
- New updates are coming very soon (D^0 4-body decays with electrons in the final state, update on D^0 3-body decays presented today, update of $D^0 \rightarrow \mu^+ \mu^-$).
- Given the current limits on the statistics, significative improvements can be expected with LHCb upgrades.

BACKUP

Future measurement precisions

Limit on BF (far from resonances for multibody)

Statistical precision on A_{CP}

from A.Contu talk "Rare charm Decays and Asymmetries" Towards Ultimate Precision in Flavour Physics, Durham, UK 2-4 April 2019

Upgrade $(50 \mathrm{fb}^{-1})$	Upgrade II (300fb^{-1})
$4.2 imes10^{-10}$	$1.3 imes10^{-10}$
10 ⁻⁸	$3 imes 10^{-9}$
10 ⁻⁸	$3 imes10^{-9}$
$1.1 imes10^{-8}$	$4.4 imes10^{-9}$
10^{-9}	$4.1 imes10^{-9}$

	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 ${ m fb}^{-1}$)
	0.2%	0.08%
_	1%	0.4%
_	0.3%	0.13%
—	12%	5%
—	4%	1.7%

Di-hadron spectra - $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

Di-muon spectra - $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ observables $\langle S_i \rangle$

$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ observables $\langle A_i \rangle$

$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$ observables $\langle S_i \rangle$

$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$ observables $\langle A_i \rangle$

Angular coefficients

$$\begin{split} I_{2} &= \int_{-\pi}^{\pi} d\phi \left[\int_{-1}^{-0.5} d\cos\theta_{\mu} + \int_{0.5}^{1} d\cos\theta_{\mu} - \int_{-0.5}^{0.5} d\cos\theta_{\mu} \right] \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}}, \\ I_{3} &= \frac{3\pi}{8} \left[\int_{-\pi}^{-\frac{3\pi}{4}} d\phi + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\phi + \int_{\frac{3\pi}{4}}^{\pi} d\phi - \int_{-\frac{3\pi}{4}}^{-\frac{3\pi}{4}} d\phi \right] \int_{-1}^{1} d\cos\theta_{\mu} \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}}, \\ I_{4} &= \frac{3\pi}{8} \left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\phi - \int_{-\pi}^{-\frac{\pi}{2}} d\phi - \int_{\frac{\pi}{2}}^{\pi} d\phi \right] \left[\int_{0}^{1} d\cos\theta_{\mu} - \int_{-1}^{0} d\cos\theta_{\mu} \right] \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}}, \\ I_{5} &= \left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\phi - \int_{-\pi}^{-\frac{\pi}{2}} d\phi - \int_{\frac{\pi}{2}}^{\pi} d\phi \right] \int_{-1}^{1} d\cos\theta_{\mu} \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}}, \\ I_{6} &= \int_{-\pi}^{\pi} d\phi \left[\int_{0}^{1} d\cos\theta_{\mu} - \int_{-1}^{0} d\cos\theta_{\mu} \right] \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}}, \\ I_{7} &= \left[\int_{0}^{\pi} d\phi - \int_{-\pi}^{0} d\phi \right] \int_{-1}^{1} d\cos\theta_{\mu} \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}}, \\ I_{8} &= \frac{3\pi}{8} \left[\int_{0}^{\pi} d\phi - \int_{-\pi}^{0} d\phi \right] \left[\int_{0}^{1} d\cos\theta_{\mu} - \int_{-1}^{0} d\cos\theta_{\mu} \right] \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}}, \\ I_{9} &= \frac{3\pi}{8} \left[\int_{-\pi}^{-\frac{\pi}{2}} d\phi + \int_{0}^{\frac{\pi}{2}} d\phi - \int_{-\frac{\pi}{2}}^{0} d\phi - \int_{\frac{\pi}{2}}^{\pi} d\phi \right] \int_{-1}^{1} d\cos\theta_{\mu} \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}}. \end{split}$$

,

1.

Angular coefficients

$$\begin{split} I_{1} &= \frac{1}{16} \left[|H_{0}^{L}|^{2} + (L \to R) & I_{4} = -\frac{1}{8} \\ &+ \frac{3}{2} \sin^{2} \theta_{P_{1}} \{ |H_{\perp}^{L}|^{2} + |H_{\parallel}^{L}|^{2} + (L \to R) \} \right], & I_{5} = -\frac{1}{4} \\ I_{2} &= -\frac{1}{16} \left[|H_{0}^{L}|^{2} + (L \to R) & I_{7} = -\frac{1}{4} \\ &- \frac{1}{2} \sin^{2} \theta_{P_{1}} \{ |H_{\perp}^{L}|^{2} + |H_{\parallel}^{L}|^{2} + (L \to R) \} \right], & I_{8} = -\frac{1}{8} \\ I_{3} &= \frac{1}{16} \left[|H_{\perp}^{L}|^{2} - |H_{\parallel}^{L}|^{2} + (L \to R) \right] \sin^{2} \theta_{P_{1}}, & I_{9} = \frac{1}{8} \left[H_{\perp}^{L} \right] \\ \end{split}$$

$$c_{1} = 1, \quad c_{2} = \cos 2\theta_{l}, \quad c_{3} = \sin^{2}\theta_{l}\cos 2\phi,$$

$$c_{4} = \sin 2\theta_{l}\cos\phi, \quad c_{5} = \sin\theta_{l}\cos\phi,$$

$$c_{6} = \cos\theta_{l}, \quad c_{7} = \sin\theta_{l}\sin\phi,$$

$$c_{8} = \sin 2\theta_{l}\sin\phi, \quad c_{9} = \sin^{2}\theta_{l}\sin 2\phi.$$

 $\frac{1}{3} [\operatorname{Re}(H_0^L H_{\parallel}^{L*}) + (L \to R)] \sin \theta_{P_1},$ $\frac{1}{4} [\operatorname{Re}(H_0^L H_{\perp}^{L*}) - (L \to R)] \sin \theta_{P_1},$ $\operatorname{Re}(H_{\parallel}^L H_{\perp}^{L*}) - (L \to R)] \sin^2 \theta_{P_1},$ $\frac{1}{4} [\operatorname{Im}(H_0^L H_{\parallel}^{L*}) - (L \to R)] \sin \theta_{P_1},$ $\frac{1}{3} [\operatorname{Im}(H_0^L H_{\perp}^{L*}) + (L \to R)] \sin \theta_{P_1},$ $\operatorname{Im}(H_{\parallel}^{L*} H_{\perp}^L) + (L \to R)] \sin^2 \theta_{P_1}.$