Rare Charm Decays at **BES**II

Liang Sun

(On behalf of BESIII Collaboration)

Wuhan University

11th International Workshop on the CKM Unitarity Triangle (CKM 2021) 22-26 Nov 2021, University of Melbourne, Australia

Outline

- BESIII experiment
- Charm datasets
- Included results (after CKM 2018):
 - Search for $D_s^+ \rightarrow \gamma e^+ \nu_e$ [PRD 99, 072002 (2019)]
 - Search for $D \to K \pi e^+ e^+$ [PRD 99, 112002 (2019)]
 - Search for $D^+ \rightarrow \Lambda(\Sigma^0)e$ [PRD 101, 031102 (2020)]
- Summary & outlook

BEPCII & BESIII

Electromagnetic CsI(Tl) Calorimeter (EMC) $\sigma_{E}/E < 2.5\% @ 1 \text{ GeV} (barrel)$ $\sigma E/E < 5\% @ 1 \text{ GeV} (end-caps)$

Time-of-Flight (TOF) $\sigma t = 90 \text{ ps (barrel)}$ $\sigma t = 120 \text{ ps} (\text{end-caps})$ Main Drift Chamber (MDC) $\sigma r \phi = 130 \ \mu m \ (single \ wire)$ $\sigma_{p_t}/p_t = 0.5\% @ 1 \text{ GeV}$

M. Ablikim et al. (BESIII Collaboration), Nucl. Instr. Meth. A614, 345 (2010)

Charm datasets

• Pairs of $D_{(s)}$ produced near threshold w/o additional hadrons

- Advantages:
 - Low background level
 - Full event info, neutrino kinematics can be inferred
 - Absolute branching fraction measurement possible with one $D_{(s)}$ tagged
 - Superb EMC performance on $e / \gamma / \pi^0$

Search for $D_s^+ \rightarrow \gamma e^+ \nu_e$ [PRD 99, 072002 (2019)]

[PRD 99, 072002 (2019)]

Motivation

- Pure leptonic decays $P \rightarrow e^+ v_e$ helicity suppressed by factor m_e^2
- Enhanced by emission of radiative photon, expected $\mathcal{B}(D_s^+ \rightarrow \gamma e^+ \nu_e) \sim 10^{-5} 10^{-3}$

Phys. Rev. D 51, 111 (1995) Mod. Phys. Lett. A 15, 2087 (2000) Phys. Lett. B 562, 75 (2003) Mod. Phys. Lett. A 27, 1250120 (2012) Phys. Rev. D 61, 114510 (2000)

Nucl. Phys. B650, 356 (2003)

 $c \qquad e^{+} \qquad c \qquad \gamma \qquad e^{+} \qquad e^{+} \qquad e^{+} \qquad e^{+} \qquad e^{+} \qquad e^{+} \qquad e^{-} \qquad$

Tree-level Feynman diagrams

• BESIII reported in 2017 $\mathcal{B}(D^+ \to \gamma e^+ \nu_e) < 3.0 \times 10^{-5} @ 90\% \text{ CL}$ [PRD 95 071102 (2017)]

Long-distance contributions

Double-tag method

- Fully reconstructed D_s^- at tag side (**ST**)
- Requiring one $\gamma_{soft}(\pi_{soft}^0)$ from D_s^* and the signal decay at the other side (**DT**)

ST yields:

$$N_{D_{(s)}}^{ST} = 2 \times N_{D\overline{D}} \times B_{ST} \times \varepsilon_{ST}$$

DT yield:
 $N_{DT}^{signal} = 2 \times N_{D\overline{D}} \times B_{ST} \times B_{sig} \times \varepsilon_{ST,sig}$
The signal branching fraction:

$$B_{\rm sig} = \frac{N_{\rm DT}^{\rm signal}}{N_{D_{(s)}}^{\rm ST} \times \varepsilon}$$

[PRD 99, 072002 (2019)]

[PRD 99, 072002 (2019)]

BF determination

• First search on this channel, the upper limit is set for $E_{\gamma}^* > 0.01 \text{ GeV}$ based on $\int_0^{\mathcal{B}_{\text{UL}}} L(\mathcal{B}) d\mathcal{B} = 0.9$:

 $\mathcal{B}(D_s^+ \rightarrow \gamma e^+ \nu_e) < 1.3 \times 10^{-4} @ 90\% \text{ CL}$

All systematic effects included

$$U_{\rm miss} \equiv E_{\rm miss} - |\vec{p}_{\rm miss}|,$$

where

$$E_{\rm miss} \equiv 2E_{\rm beam} - E_{\gamma} - E_e - E_{\rm ST} - E_{\gamma_{\rm soft}}(\pi^0_{\rm soft})$$

and

$$\vec{p}_{\mathrm{miss}} \equiv -(\vec{p}_{\gamma} + \vec{p}_e + \vec{p}_{\mathrm{ST}} + \vec{p}_{\gamma_{\mathrm{soft}}(\pi^0_{\mathrm{soft}})})$$

Search for $D \to K\pi e^+ e^+$ [PRD 99, 112002 (2019)]

[PRD 99, 112002 (2019)]

Motivation

- Lepton Number Violation ($\Delta L \neq 0$) is forbidden in SM
- Neutrino oscillation $\rightarrow m_{\nu} \neq 0 \rightarrow$ New Physics needed to explain mass origin
- Nature of neutrino: Dirac or Majorana (ν_m)?
- Majorana neutrino can lead to $\Delta L = 2$ LNV processes
- LNV is introduced in many NP models:
 - 4th quark generation, SO(10) SUSY GUT, exotic Higgs, etc.
- LNV processes have been widely searched for in τ , K, D, and B decays

[PRD 99, 112002 (2019)]

Analysis details

- Three channels studied $M_{\rm BC} = \sqrt{E_{\rm beam}^2 |\vec{p}_D|^2}$
- Requirements on ΔE to suppress background

 $\Delta E = E_D - E_{\text{beam}}$

• BF determined using single-tag method:

$$\mathcal{B}_{D \to K\pi e^+ e^+} = \frac{N_{\text{sig}}}{2 \cdot N_{\text{D}\bar{\text{D}}}^{\text{tot}} \cdot \epsilon \cdot \mathcal{B}_{\text{sub}}}$$

•
$$N_{D^+D^-}^{\text{tot}} \sim 8.3 \text{ M}, N_{D^0\overline{D}^0}^{\text{tot}} \sim 10.6 \text{ M}$$
 [Chin. Phys. C 42, 083001 (2018)]

• BF Upper limits @ 90% CL are determined:

	Channels	Upper Limit	$\int_{0}^{\mathcal{B}_{\rm UL}} L(\mathcal{B}) \mathrm{d}\mathcal{B} = 0.9$
	$D^0 \to K^- \pi^- e^+ e^+$	2.8×10^{-6}	50
$\left(\right)$	$D^+ \to K^0_S \pi^- e^+ e^+$	3.3×10^{-6}	First searches o
l	$D^+ \to K^- \pi^0 e^+ e^+$	8.5×10^{-6}	channels so far!

Searching for Majorana neutrino

- Different m_{ν_m} hypotheses tested between 0.25 and 1 GeV/c²
- BFs are related to mixing matrix elements:

 $\frac{\Gamma(m_{\nu_m}, V_{e\nu_m}(m_{\nu_m}))}{\Gamma(m_{\nu_m}, V'_{e\nu_m}(m_{\nu_m}))} = \frac{|V_{e\nu_m}(m_{\nu_m})|^4}{|V'_{e\nu_m}(m_{\nu_m})|^4}$

[Chin. Phys. C 39, 013101 (2015)]

Search for $D^+ \rightarrow \Lambda(\Sigma^0)e$ [PRD 101, 031102 (2020)]

[PRD 101, 031102 (2020)]

Motivation

- Excess of baryons over antibaryons in the Universe →
 Baryon Number Violating processes exist
- BNV is allowed in GUTs and some SM extensions
- BFs of $D \rightarrow B\ell, B = \Lambda, \Sigma, p$ expected to be no more than $\mathcal{O}(10^{-29})$ [PRD 72, 095001 (2005)]

Analysis details

- Baryons reconstructed from $\Lambda \rightarrow p\pi^-$ and $\Sigma^0 \rightarrow \gamma \Lambda$
- Requirements on ΔE to suppress background
- BF determined using single-tag method:

$$\mathcal{B}^{\mathrm{UL}} = N_{\mathrm{sig}}^{\mathrm{UL}} / (2 \times N_{D^+D^-}^{\mathrm{tot}} \times \varepsilon \times \mathcal{B}_{\Lambda, \Sigma^0})$$

• $N_{D^+D^-}^{tot} \sim 8.3 \text{ M}$ [Chin. Phys. C 42, 083001 (2018)]

$$\Delta E = E_D - E_{\text{beam}}$$
$$M_{\text{BC}} = \sqrt{E_{\text{beam}}^2 - |\vec{p}_D|^2}$$

[PRD 101, 031102 (2020)]

18

Analysis details

- Baryons reconstructed from $\Lambda \rightarrow p\pi^-$ and $\Sigma^0 \rightarrow \gamma \Lambda$
- Requirements on ΔE to suppress background
- BF determined using single-tag method:

$$\mathcal{B}^{\mathrm{UL}} = N_{\mathrm{sig}}^{\mathrm{UL}} / (2 \times N_{D^+D^-}^{\mathrm{tot}} \times \varepsilon \times \mathcal{B}_{\Lambda,\Sigma^0})$$

• $N_{D^+D^-}^{tot} \sim 8.3 \text{ M}$ [Chin. Phys. C 42, 083001 (2018)]

$$\Delta E = E_D - E_{\text{beam}}$$

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\vec{p}_D|^2}$$

BF Upper limits @ 90% CL are determined:

C	Channels	Upper Limit	a Buu
	$D^+ \to \Lambda e^+$	1.1×10^{-6}	$\int^{\mathcal{B}_{0L}} L(\mathcal{B}) \mathrm{d}\mathcal{B} = 0.9$
	$D^+ \to \overline{\Lambda} e^+$	6.5×10^{-7}	J ₀ First soarchos
	$D^+ \rightarrow \Sigma^0 e^+$	1.7×10^{-6}	THIST SEALCHES
	$D^+ \to \overline{\Sigma}{}^0 e^+$	1.3×10^{-6}	
	$ \begin{array}{c} 6\\ 4\\ 4\\ 4\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\$	(d) I (d) I (d) I (e) I (b) I (d) I (e) I (f)	$D^+ \rightarrow \Lambda e^+$ $D^+ \rightarrow \Sigma^0 e^+$ 2 1.84 1.86 1.88

Summary & outlook

- BESIII provides large data samples near charm thresholds
- Recent searches on rare charm decays covered:
 - $D_s^+ \rightarrow \gamma e^+ \nu_e$
 - $D \rightarrow K\pi e^+ e^+$
 - $D^+ \to \Lambda(\Sigma^0)e$
 - Most are first searches
- More analyses on rare/forbidden decays are on the way:
 - A wide range of topics: invisible final states, LNV, BNV, FCNC, etc.
 - Still great potentials on D_s^+ and Λ_c^+ decays
- More $\psi(3770)$ data: $\int \mathcal{L} \sim 20 \text{ fb}^{-1}$ in a few years [Chin. Phys. C 44, 040001 (2020)]