Cloud infrastructure @ CERN

By Laurens Ledeganck & Xander Dewulf

Introduction

Laurens Ledeganck

Xander Dewulf

Laakdal (province of Antwerp)

Heers (province of Limburg)

From collision to analysis

- 1. Tremendous amount of data
- 2. Trigger (99% of data is deleted)
- 3. 1 out of 1'000'000 collisions saved
- Data = stored in the data centre + shared
 with institutions around the world

The Cloud: what?

- Sharing resources
- Connecting storage, servers and users
- Easy to use
- @ CERN: data from LHC (over 200 petabytes)
- Built in such a way that makes access to the data easy (for physicists)

The Cloud: how?

- Cloud is built in certain 'layers'
- Physicists => top layer for analysis
- Layers below are used to structure:

Virtual machines

- Divide servers into smaller parts
- Allows you to work with another system on your pc
- Fair share of hardware
- Pros:
 - Fair sharing
 - Isolation
 - O Ease of development
- Cons:
 - O Small performance penalty (4%)

[lledegan@lxplus8s06 ~]\$ openstack image list

```
| 214e130a-aecb-485a-89cb-3b6b85fd87b0 | CC7 - x86_64 [2021-11-01] | active |
```

```
[lledegan@lxplus8s06 ~]$ openstack flavor list
```

ID	Name	RAM	Disk	Ephemeral	VCPUs	Is Public
12076	m2.large	7500	40	0	4	True
17895	m2.small	1875	10	0	1	True
38242	m2.medium	3750	20	0	2	True

[lledegan@lxplus8s06 ~]\$ openstack server create --image "CC7 - x86_64 [2021-11-01]" --flavor "m2.small" --key-name lledegan-lxplus --property cern-waitdns=false VM-example

[lledegan@lxplus8s06 ~]\$ openstack server list

 | 5f40e28a-e01e-4a3b-8743-43f57fd863dd
 VM-example
 | ACTIVE |

 CERN_NETWORK=188.185.90.42, 2001:1458:d00:41::100:3e5
 | CC7 - x86_64 [2021-11-01] | m2.small |

. . .

. . .

The CERN Cloud in numbers

These are some of the data centre's impressive statistics!

For reference: $TiB = 2^{40} B$, $PiB = 2^{50} B$

GPU's

🗷 mnist-kale-katib.ipynb 🛛 🛛 🛛 🛛 Terminal 2	×										
@gpu1-0:~\$ nvidia-smi Thu Oct 28 13:20:52 2021											
NVIDIA-SMI 440.64 Driver Version: 440.64	CUDA Version: 10.2										
GPU Name Persistence-M Bus-Id Disp.A Fan Temp Perf Pwr:Usage/Cap Memory-Usage	Volatile Uncorr. ECC GPU-Util Compute M.										
0 Tesla V100S-PCI Off 00000000:00:07.0 off N/A 38C PO 38W / 250W 31459MiB / 32510MiB											
+ Processes: GPU PID Type Process name ====================================	GPU Memory Usage 										

Examples

SWAN

• Service for Web-based ANalysis

- Plot functions
- Calculate integrals

ax.spines.right.set_visible(False)
ax.spines.top.set_visible(False)
ax.xaxis.set_ticks_position('bottom')

ax.set_xticks((a, b))
ax.set_xticklabels(('\$a\$', '\$b\$'))
ax.set_yticks([])

Minima and roots of a function

Demos finding minima and roots of a function.

Define the function

Find minima

#

Global minima found [-1.30641113] Local minimum found 3.8374671194983834 Root finding

#

#

First root found [0.] Second root found [-2.47948183] Plot function, minima, and roots

CMS Data analysis

- Data = public (after short period)
 - Avoid military use
 - https://opendata.cern.ch
- Analysis on laptop: 2 years
- Analysis in cloud: 5 minutes

=> 2 examples

CMS Data analysis

1) Detection and classification of peaks

<u>Particle</u>	<u>Taq</u>	<u>Mass</u>	<u>Particle</u>	<u>With</u>	<u>Composition</u>	
η	0		0.548	η	0.00131	complicated
ω (782)	1	0.783	ω (782)	8.49000	complicated	
ρ (770)	2	0.775	ρ (770)	150.00000	complicated	
K°	3		0.498	K°	NaN	ds ⁻
D°	4	1.860	D ^o	NaN	сū	
• • •						

These are the peaks we get:

[0.545 0.77 1.008 1.222 2.462 3.106 3.716 5.323 6.748 9.454 19.516 56.523 91.139]

CMS Data analysis

2) Identification of QCD-jets with machine learning

Links and references

CERN-cloud documentation: https://clouddocs.web.cern.ch/

Docker: https://www.docker.com/

Tutorial for Jupyter Notebooks: https://jupyter-tutorial.readthedocs.io/en/latest/first-steps/install.html

Python course: https://www.coursera.org/specializations/python#courses

Scipy Lectures: https://scipy-lectures.org/

Matplotlib tutorial: https://matplotlib.org/stable/tutorials/index.html

CERN training: https://clouddocs.web.cern.ch/containers/training.html#external Aviator application: https://aviator.web.cern.ch/aviator/#/

Thank you!

Many thanks to Spyros Trigazis, José Castro León and Daniel Rickard Holmberg

Thank you!

... and also to: François Briard, Feza Tankut, Marguerita Boselli and all the other coördinators Cédric Vanhoolandt and Marijke Keupers All the other students