

Baryon Number Fluctuations

-- medium modifications and parity doubling --

Ref. Koch, Marczenko, Redlich, CS, arXiv:2308.15794

Chihiro Sasaki
Institute of Theoretical Physics
University of Wroclaw, Poland
SKCM², Hiroshima University, Japan

Fate of hadrons in matter

Unbroken chiral symmetry → parity doubling

- ☐ In reality, the mass different is huge.
- Degenerate parity partners at high T/ρ_B as signatures of chiral symmetry restoration!

LQCD at finite T & zero µ

- Spatial masses, DeTar-Kogut, 1987
- Temporal masses,
 FASTSUM Collab., 2017-19

Net proton vs. baryon number fluct.

- χ_2^B sensitive to the QCD phase transition
- → Net proton fluctuations as a good proxy for net baryon fluctuations: folklore
- ✓ Nucleon parity doublet: N(939) & N*(1535)
 - Mean: $\langle N_B \rangle \equiv \kappa_1^B = \kappa_1^+ + \kappa_1^-$
 - Variance: $\langle \delta N_B \delta N_B \rangle \equiv \kappa_2^B = \kappa_2^{++} + \kappa_2^{--} + 2\kappa_2^{+-}$
 - Cumulants → susceptibilities:

$$\kappa_n^B = VT^3\chi_n^B \qquad \chi_2^B = \chi_2^{++} + \chi_2^{--} + 2\chi_2^{+-}$$

• Sign and strength of χ_2^{+-} ?

DeTar-Kunihiro/Parity doublet model

- □SU(2) chiral transformation of 2 nucleons
 - → how to assign 2 indep. rotation to them?

$$\psi_{1L} \to g_l \psi_{1L}, \quad \psi_{1R} \to g_r \psi_{1R} \sim \psi_{1L} : (1/2,0) \quad \psi_{1R} : (0,1/2)$$

 $\psi_{2L} \to g_r \psi_{2L}, \quad \psi_{2R} \to g_l \psi_{2R} \sim \psi_{2L} : (0,1/2) \quad \psi_{2R} : (1/2,0)$

$$\mathcal{L}_{m} = m_{0} \left(\bar{\psi}_{2} \gamma_{5} \psi_{1} - \bar{\psi}_{1} \gamma_{5} \psi_{2} \right) \Rightarrow m_{N_{\pm}} = \frac{1}{2} \left[\sqrt{c_{1} \sigma^{2} + 4 m_{0}^{2}} \mp c_{2} \sigma \right]$$

[DeTar-Kunihiro, 1989]

Red: standard Blue: Mirror

Parity doubling of baryons

□ Lattice QCD at zero µ

[Aarts et al., 2016]

 \square Survival mass $m_N \approx m_0 \neq 0$

[DeTar, Kunihiro, 1989]

$$M_{\pm} = \sqrt{m_0^2 + c_1^2 \sigma^2} \mp c_2 \sigma \xrightarrow{\sigma \to 0} m_0$$

Thermodynamics of parity doubler

Linear sigma model for (σ,π) , ω , (N,N^*) & MF

- \square New chemical potentials $\mu_{+,-}$ for N,N*
- $oxed{\Box}$ Set at the end $\mu_{\pm} \ = \ \mu_{N} = \mu_{B} g_{\omega} \omega$
- ☐ Susceptibilities from thermodynamics pot.

$$\Omega = \Omega_+ + \Omega_- + V_\sigma + V_\omega$$

$$0 = \frac{\partial \Omega}{\partial \sigma}$$
$$0 = \frac{\partial \Omega}{\partial \omega}$$

$$\chi_{2}^{\alpha\beta} = \frac{1}{VT^{3}} \kappa_{2}^{\alpha\beta} = -\frac{\mathrm{d}^{2}\hat{\Omega}}{\mathrm{d}\hat{\mu}_{\alpha}\mathrm{d}\hat{\mu}_{\beta}} \bigg|_{\chi_{2}^{B}}$$

$$\chi_{2}^{B} = \chi_{2}^{++} + \chi_{2}^{--} + 2\chi_{2}^{+-}$$

$$\chi_2^B = \chi_2^{++} + \chi_2^{--} + 2\chi_2^{+-}$$

Correlations between N & N*

Linear sigma model & nucleon parity doubler

Liquid-gas vs. chiral

- \square LG dominated by χ_2^{++}
- \square Chiral dominated by both, but $\chi_2^{--} > \chi_2^{++}$
- \square Peaks diminished by $\chi_2^{+-} \rightarrow$ weak signal in χ_2^B

Liquid-gas vs. chiral

- □Increasing T → 2 peaks getting closer
- \square Qualitative difference of χ_2^{++} from χ_2^{--}
- \square Stronger signal left in χ_2^B

χ_2/χ_1 along the phase boundary

☐ The net-proton fluctuations do not necessarily reflect the net-baryon fluctuations at the chiral phase boundary.

SUMMARY

Concluding remarks

- □ Negative correlation between N and N*
- $\Box \chi_2^{++} \approx \text{proton}$ may not reflect χ_2^B at the chiral phase boundary.
- Proposition: $\chi_2^{++,--,+-}$ in other non-perturbative approaches.