Charged-hadron production in p+Pb, Pb+Pb, and Xe+Xe collisions measured with the ATLAS detector

Petr Balek

2 December 2023

introduction

- quark-gluon plasma is created in heavy-ion (HI) collisions
- partons traversing through this matter lose their energy
- charged-hadron spectra in heavy-ion collisions are driven by the mechanism of energy loss and also by other effects
- ullet nuclear modification factor R_{AA} quantifies the difference between the HI and pp spectra:

$$R_{\mathrm{AA}} = rac{1}{\langle T_{\mathrm{AA}}
angle} rac{1/N_{\mathrm{evt}} \, \mathrm{d}^2 N_{\mathrm{A+A}}/\mathrm{d} \eta \mathrm{d} p_{\mathrm{T}}}{\mathrm{d}^2 \sigma_{\mathrm{pp}}/\mathrm{d} \eta \mathrm{d} p_{\mathrm{T}}}$$

- both HI and pp collisions must be at the same center-of-mass energy
- what are the differences between Pb+Pb and Xe+Xe collisions?
- what are the differences between those and p+Pb collisions where no QGP is created?

ATLAS detector

- Inner detector 2 T magnetic field
- Forward Calorimeter (FCal) used for the determination of centrality

centrality in Pb+Pb and Xe+Xe

- \bullet centrality based on energy deposited in both sides of the Forward Calorimeter (3.1 $<|\eta|<$ 4.9)
- pile-up events in heavy-ion collisions are removed from the analysis
- $\langle N_{\rm part} \rangle$ number of participating nucleons
- $\langle N_{\rm coll} \rangle$ number of $\frac{1}{100}$ binary nucleon–nucleon $\frac{1}{100}$ collisions
- $\langle T_{\rm AA} \rangle = \langle N_{\rm coll} \rangle / \sigma_{NN}$

centrality in p+Pb

- centrality based on energy deposited in Pb-going side of the Forward Calorimeter (-4.9 < η < -3.1)
- pile-up events in heavy-ion collisions are removed from the analysis

EPJC 76 (2016) 4:199, arXiv: 1508.00848

analysis overview

- the distributions are always corrected to the particle-level, i.e. independent on the detector acceptance
 - easy for theorists to compare with their models
 - easy for experimentalists to compare with other collaborations
 - tricky for experimentalists to work out all the corrections
- using several data sets:

▶ pp,
$$\sqrt{s_{NN}} = 5.02 \text{TeV}, 25 \text{pb}^{-1}$$

▶ p+Pb, $\sqrt{s_{NN}} = 5.02 \text{TeV}, 28 \text{nb}^{-1}$

► Pb+Pb,
$$\sqrt{s_{NN}} = 5.02$$
TeV, 0.50 nb⁻¹

► Xe+Xe,
$$\sqrt{s_{NN}} = 5.44$$
TeV, $3\mu b^{-1}$

- to get particle-level distributions, we correct for:
 - ▶ fake and secondary tracks
 - $ightharpoonup p_{\mathrm{T}}$ and η resolutions
 - ► track reconstruction efficiency
 - extrapolation to the same $\sqrt{s_{NN}}$ (for Xe+Xe reference only)

- larger suppression in more central collisions
- milder suppression in more peripheral collisions
- "shouldn't there be no suppression when the collisions are peripheral enough?"
 - ► good question, uncertain answer
 - ► problem with peripheral collisions is that it's not clear what is an inelastic nucleus—nucleus collision and what is not

- all 3 experiments are consistent
- anything else would be worrisome
- all of them use the same definition for primary particles, correct to particle-level, ... etc.
- ullet different $|\eta|$ ranges but $R_{
 m AA}$ doesn't have any strong $|\eta|$ -dependence

- can compare suppression in Pb+Pb and Xe+Xe
- both follow the same trend but the magnitude is different
- size of the fireball is not enough to describe the system, something else matters as well

- CIBJET framework; arXiv:1808.05461
 - ► VISHNU is a (2+1)D relativistic viscous hydrodynamic model
 - ► CUJET describes high-p_T energy loss

- Soft Collinear Effective Theory; SCET_G, arXiv:1509.02936
 - uses modified splitting functions and generalized DGLAP evolution
 - ► partons lose energy via soft gluon emissions
 - describes formation of showers in the medium

- Linear Boltzmann Transport model; LBT, arXiv:1503.0331
 - kinetic description of parton propagation
 - ► hydrodynamic description of the medium evolution
 - ► also keeps track of thermal recoil partons from each scattering and their further propagation in the medium

jet R_{AA} : Pb+Pb and Xe+Xe

- ullet definition of jet $R_{
 m AA}$ is analogical to charged hadron $R_{
 m AA}$
- some models can describe both charged hadron production and jet production
- others focus only on jets (e.g. <u>Effective Quenching</u>)

charged hadron R_{AA} : p+Pb

- no QGP in p+Pb collisions
- "just" effects of cold nuclear matter

- interestingly, jet suppression is observed in p+Pb
- apparent jet suppression: ATLAS-CONF-2023-011

charged hadron R_{AA} : p+Pb

- comparisons available only for inclusive centrality
- ATLAS measurement consistent with CMS and ALICE
- HKMPSW model; arXiv:1808.05461

summary

- quark-gluon plasma affects partons traversing it
- the energy loss of partons and partons' interactions with QGP are well substantiated
- all these affect production of jets, hadrons, ...
- there are still many unknowns:
 - ▶ is there a suppression even for the most peripheral collisions?
 - ▶ at very high p_T , is there some saturation of R_{AA} at values lower than 1 or will it eventually reach unity?
 - ▶ what is the nature of apparent jet suppression in p+Pb?
 - ► can the same apparent suppression be observed in Pb+Pb and Xe+Xe?
 - ▶ can the models describe low- p_T R_{AA} and azimuthal asymmetry (v_n) at the same time?
 - ightharpoonup can they describe the intermediate p_{T} where both hydrodynamics and hard-scattering can't be neglected?
- with the new data from Run 3, we may resolve at least some of these

bonus slides

a.k.a. back-up slides

fake and secondary tracks correction

- some reconstructed tracks are better than others
- tracks may be linked to:
 - primary particles (our interest, $\tau > 0.3 \times 10^{-10} \, \mathrm{s})$
 - ▶ secondary particles, from decays of Σ , Ξ , ... (not our interest)
 - ▶ no particles, just a spurious combination of hits (not our interest)

$p_{\rm T}$ and η resolution correction

- ullet measured $p_{
 m T}$ is not the real $p_{
 m T}$
- \bullet $\sigma_{p_{\mathrm{T}}} \approx c_0 + c_1 \cdot p_{\mathrm{T}}$
- ullet migration to other p_{T} bin is very common
- ullet problem more pronounced at higher p_{T}
- corrected for by Bayesian unfolding

JHEP 07 (2023) 074, arXiv: 2211.15257

ullet analogically for η resolution, although it's more diagonal

$p_{\rm T}$ resolution

- off-diagonal elements susceptible to statistical fluctuations
- first, the distributions of resolution is fitted:

 the fits are used to fill the migration matrices for the Bayesian unfolding

 \Rightarrow this approach lead to a large reduction of systematic uncertainties

track reconstruction efficiency

- some particles pass through the detector undetected
- the reconstruction efficiency depends on the type of a particle
 - ► π, K, p
 - \star reconstructed from low p_{T} ; small differences
 - ▶ strange baryons (Σ, Ξ, Ω)
 - \star at low p_{T} , decay before reaching the detector o truly unsportsmanlike
 - \star possible to reconstruct only at $p_{
 m T}\gtrsim 10{
 m GeV}$
 - ► simulations reweighted to reflect the particle composition as in data
 - lacktriangle at p_{T} 3-4GeV, there is a "bitter spot" where it hurts the most

extrapolation to the same $\sqrt{s_{\scriptscriptstyle NN}}$

- ullet to eliminate differences between samples due to different $\sqrt{s_{\scriptscriptstyle NN}}$
- ullet pp cross-section measured only at $\sqrt{s}=5.02 {\rm TeV}$
- to use it for comparison of Xe+Xe collisions, using Pythia for extrapolation to $\sqrt{s}=5.44{\rm TeV}$

