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Various phenomena occur 
during the system evolution.
We use different assumptions 
and models to describe stages 
of heavy-ion collisions.
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It is hard to describe the low-𝑝𝑇 
pion enhancement!
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The non-equilibrium state of the system is characterized by relevant observables 𝐵𝑛  in addition to 
the standard set of conserved ones. We look for the distribution which maximizes the information 
entropy Sinf = −Tr 𝜌𝑟𝑒𝑙 𝑡 ln 𝜌𝑟𝑒𝑙 𝑡 :
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Here we assume the following:
• A state overpopulated by soft pions is formed at 𝜏 < 𝜏𝜋

𝐶𝐹𝑂

• For 𝜏𝜋
𝐹𝑂 < 𝜏 < 𝜏𝜋

𝐶𝐹𝑂 the collisions conserve the particle number, but evolve the distribution function 
to a thermal equilibrium distribution (dominance of elastic collisions over inelastic ones)
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The non-equilibrium process of pion production within the Zubarev approach of the non-equilibrium 
statistical operator leads to the appearance of a non-equilibrium pion chemical potential
[Particles 2020, 3, 380–393]

𝑓𝜋 = exp
𝐸

𝑇
− 1

−1

 →  𝑓𝜋 = exp
𝐸 − 𝜇𝜋

𝑇
− 1

−1
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Here we consider chemical freeze-out on the cylindrical boost-invariant hypersurface at constant 
freeze-out proper time

Σ𝜇 = 𝜏 cosh 𝜂 , 𝑟 c𝑜𝑠 𝜑 , 𝑟 sin 𝜑 , 𝜏 sinh 𝜂 , where 𝜏 = 𝑡2 − 𝑧2 = 𝑐𝑜𝑛𝑠𝑡.  and 𝜂 =
1

2
ln

𝑡 + 𝑧

𝑡 − 𝑧

𝜂

𝑟φ
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𝑑6𝑁𝑖

𝑑𝑝𝑇𝑑𝑦𝑑𝜓𝑑𝑟𝑑𝜂𝑑𝜑
∝ 𝜏𝑟𝑝𝑇𝑚𝑇 cosh(𝑦 − 𝜂) exp

𝑚𝑇 cosh 𝜌 cosh(𝑦 − 𝜂) − 𝑝𝑇 sinh 𝜌 cos 𝜑 − 𝜓 − 𝜇𝑖

𝑇
± 1

−1
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𝑡 + 𝑧

𝑡 − 𝑧

Then with the help of the Cooper-Frye formula 𝐸
𝑑3𝑁

𝑑3 Ԧ𝑝
= Σ𝐹𝑂׬ 
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P 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

Bayes theorem:
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P 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

P Ԧ𝑥| Ԧ𝑦𝑜𝑏𝑠 =
ℒ Ԧ𝑥; Ԧ𝑦𝑜𝑏𝑠 𝑃( Ԧ𝑥)

𝑃( Ԧ𝑦𝑜𝑏𝑠)
∝ ℒ Ԧ𝑥; Ԧ𝑦𝑜𝑏𝑠 × 𝑃( Ԧ𝑥)

Bayes theorem:

Suppose we have a model which for an input parameter vector Ԧ𝑥 = (𝑥1, … , 𝑥𝑛) gives an output 
Ԧ𝑦 = Ԧ𝑦 Ԧ𝑥 = (𝑦1, … , 𝑦𝑚). We want to find the “optimal” value of Ԧ𝑥 to describe the experimental 
data Ԧ𝑦𝑜𝑏𝑠
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|2𝜋Σ|
exp −

1

2
Ԧ𝑦𝑜𝑏𝑠 − Ԧ𝑦 Ԧ𝑥

𝑇
Σ−1 Ԧ𝑦𝑜𝑏𝑠 − Ԧ𝑦 Ԧ𝑥

Bayes theorem:
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Likelihood Prior

If we know mean values and variance, then the likelihood takes the form of multivariate 
Gaussian
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Define the model 
Choose prior and 

observables
Produce train & 

validation data sets

Reduce dimensionality 
with PCA 

Train and validate
GP emulators

Sample posterior 
distribution with MCMC

Find MAP & Validate the result
(Closure test & MAP validation)

Validation step
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• Blast-Wave thermal particle generator model 
with SMASH afterburner

• Uniform prior:
𝜏 ∈ 5; 15  𝑓𝑚/𝑐
𝑅 ∈ 6; 15  𝑓𝑚
𝑇 ∈ 145; 165  𝑀𝑒𝑉
𝑣 ∈ 0.65; 0.9
𝑛 ∈ 0.3; 1.0
𝜇𝜋 ∈ 0; 137.9  𝑀𝑒𝑉

• Observables: 𝑝, ҧ𝑝, 𝜋+, 𝜋−, 𝐾+, 𝐾− spectra in 0-5% 
Pb-Pb@2.76 TeV collisions for 𝑝𝑇 ≤ 2 GeV/c

• 200 training and 50 validation data sets
• 10 PCs

• Kernel: K(𝑥𝑖 , 𝑥𝑗) = 𝜃𝐴
2 exp −

𝑥𝑖−𝑥𝑗
2

2𝜃𝐿
2 + 𝜃𝑛𝛿𝑖,𝑗

• 10000 MCMC samples
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The model gives non-zero pion 
chemical potential 𝜇𝜋 ≃ 24 MeV!



Summary
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• The non-equilibrium process of pion production within the Zubarev approach of 
the non-equilibrium statistical operator leads to the appearance of a non-
equilibrium pion chemical potential

• Naïve model gives the value of effective chemical potential close to the pion mass 
and can describe data well, but it does not resonance decays and final state 
interactions

• More sophisticated model gives much smaller, but non-zero value of pion 
chemical potential



Standard Fit
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Result is consistent with the 
ALICE [PRC 88, 044910 (2013)]

𝑇 = 95 ± 4 ± 10 MeV
𝛽𝑇 = 0.651 ± 0.004 ± 0.02

𝑛 = 0.712 ± 0.019 ± 0.086
𝜒2

𝑛𝑑𝑜𝑓
= 0.15

But in this model, we have less 
“slow” 𝜋± than in the data:
• Bose enhancement?
• Feed-down?

𝑑𝑁

𝑝𝑇𝑑𝑝𝑇
∝ න

0

𝑅

𝑟𝑑𝑟 𝑚𝑇𝐼0

𝑝𝑇 sinh 𝜌

𝑇
𝐾1

𝑚𝑇 cosh 𝜌

𝑇

Standard fit – Blast-Wave model



MCMC
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Example: Metropolis-Hastings algorithm
1. Draw a proposal for Ԧ𝑥𝑖 → Ԧ𝑥′𝑖+1 from the proposal distribution 𝑄

2. Compute acceptance probability 𝐴( Ԧ𝑥𝑖 → Ԧ𝑥′𝑖+1) = min 1;
ℒ Ԧ𝑥′𝑖+1;𝑦𝑜𝑏𝑠 ×𝑃( Ԧ𝑥′𝑖+1)

ℒ Ԧ𝑥𝑖;𝑦𝑜𝑏𝑠 ×𝑃( Ԧ𝑥𝑖)

𝑄( Ԧ𝑥′𝑖+1→ Ԧ𝑥𝑖)

𝑄( Ԧ𝑥𝑖→ Ԧ𝑥′𝑖+1)

3. Pick a random number 𝑟 from uniform range [0, 1]
4. If 𝐴( Ԧ𝑥𝑖 → Ԧ𝑥′𝑖+1) > 𝑟, accept the proposed move and set Ԧ𝑥𝑖+1 = Ԧ𝑥′𝑖+1. Otherwise set Ԧ𝑥𝑖+1 = Ԧ𝑥𝑖  
5. Set 𝑖 = 𝑖 + 1 and repeat the process

Problem: We don’t have an analytic form of Ԧ𝑦 Ԧ𝑥 ⇒ we don’t have an analytic expression for ℒ Ԧ𝑥; Ԧ𝑦𝑜𝑏𝑠

Solution: Markov Chain Monte-Carlo Sampling



Gaussian Processes
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Problem: MCMC requires many model evaluations to reconstruct the likelihood function.

Gaussian process - a stochastic process, in which every finite set 𝑌𝑖 𝑖=1
𝑚  is a multivariate Gaussian 

random variable 𝑁 Ԧ𝜇, Σ . Approach based on the important property of multivariate normal 
distribution:
Let A ∼ 𝑁( Ԧ𝜇, Σ). If A′ = TA + c, then A′ ∼ 𝑁(𝑇 Ԧ𝜇 + 𝑐, 𝑇ΣTT).

We need to know the covariance matrix for the given data set. It is parametrized in terms of 

hyperparameters Ԧ𝜃  

𝑓
𝑌

∼ 𝑁
𝜇𝑓

𝜇𝑌
,

Σ𝑋∗,𝑋∗ Σ𝑋∗,𝑋

Σ𝑋,𝑋∗ Σ𝑋,𝑋
, 𝑇 =

𝐼 −Σ𝑋∗,𝑋Σ𝑋,𝑋
−1

0 𝐼
⇒

𝑓′

𝑌′

∼ 𝑁
0
0

,
Σ𝑋∗,𝑋∗ − Σ𝑋∗,𝑋Σ𝑋,𝑋

−1 Σ𝑋,𝑋∗ 0

0 Σ𝑋,𝑋

𝑓′ = 𝑓 − Σ𝑋∗,𝑋Σ𝑋,𝑋
−1 𝑌 ⇒  𝑓 ቚ

𝑌=𝑦
∼ 𝑁(Σ𝑋∗,𝑋Σ𝑋,𝑋

−1 𝑦, Σ𝑋∗,𝑋∗ − Σ𝑋∗,𝑋Σ𝑋,𝑋
−1 Σ𝑋,𝑋∗)

Σij = K 𝑥𝑖 , 𝑥𝑗; Ԧ𝜃 ⇒
𝑑 ln 𝑃 𝑌 Ԧ𝜃

𝑑 Ԧ𝜃
= 0

Solution: Emulate model using Gaussian processes



Principal Component Analysis
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1. Let us define the matrix 𝑀𝑖𝑗 =
𝑦𝑖 𝑥𝑗 − 𝑦𝑖

𝜎𝑖
→ 𝐶 = 𝑀𝑇𝑀 − 𝑚 × 𝑚 covariance matrix

2. Sort eigenvalues 𝜆𝑖 and eigenvectors Ԧ𝑣𝑖 of matrix 𝐶 in descending order of 𝜆𝑖

3. Keep 𝑝 first components which together explain the desired fraction of total variance

4.  𝑉𝑝 = Ԧ𝑣1 … Ԧ𝑣𝑝 → Ԧ𝑧 = Ԧ𝑦 𝑉𝑝, Ԧ𝑦 = Ԧ𝑧 𝑉𝑝
𝑇 , Σ𝑧 = 𝑉𝑝

𝑇Σ𝑦𝑉𝑝 

Problem: GP can take a multidimensional input, but the output is always a scalar.
𝑀 observables = 𝑀 GP emulators. Typical order is 𝑂 100  observables.

Solution: Dimension reduction via Principal Component Analysis



Likelihood with PCA and GP
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Define your 
model

Choose prior and 
observables

Produce train & 
validation data sets

Reduce dimensionality 
with PCA 

Train and validate
GP emulators

Sample posterior 
distribution with MCMC

Find MAP & Validate the result
(Closure test & MAP validation)

ℒ Ԧ𝑥; Ԧ𝑦𝑜𝑏𝑠 =
1

|2𝜋(Σexp + Σ𝐺𝑃)|
exp −

1

2
Ԧ𝑧𝑜𝑏𝑠 − Ԧ𝑧𝐺𝑃 Ԧ𝑥

𝑇
(Σexp + Σ𝐺𝑃)−1 Ԧ𝑧𝑜𝑏𝑠 − Ԧ𝑧𝐺𝑃 Ԧ𝑥

Likelihood with GP emulators and PCA:

Where:

Ԧ𝑧𝑜𝑏𝑠 = Ԧ𝑦𝑜𝑏𝑠 𝑉𝑝, Σexp = 𝑉𝑝
𝑇Σ𝑉𝑝


	Slide 18: Phenomenology of Identified Particle Spectra in Heavy-Ion Collisions at LHC Energies
	Slide 19:  Outline
	Slide 20:  Introduction
	Slide 21:  Introduction
	Slide 22:  Introduction
	Slide 23:  Introduction
	Slide 24:  Introduction
	Slide 25:  Introduction
	Slide 26:  Zubarev approach: Overview
	Slide 27:  Zubarev approach: Overview
	Slide 28:  Zubarev approach: Overview
	Slide 29:  Zubarev approach: Overview
	Slide 30:  Zubarev approach: Overview
	Slide 31:  Zubarev approach: Model for pi
	Slide 32:  Zubarev approach: Model for pi
	Slide 33:  Zubarev approach: Model for pi
	Slide 34:  Blast-Wave Model
	Slide 35:  Blast-Wave Model
	Slide 36:  Blast-Wave Model
	Slide 37:  Blast-Wave Model
	Slide 38:  Naïve Model
	Slide 39:  Naïve Model
	Slide 40:  Naïve Model
	Slide 41:  Naïve Model
	Slide 42:  Bayesian Inference
	Slide 43:  Bayesian Inference
	Slide 44:  Bayesian Inference
	Slide 45:  Bayesian Inference
	Slide 46:  Bayesian Inference
	Slide 47:  Bayesian Inference Workflow
	Slide 48:  Model Setup
	Slide 49:  Posterior Probability Distribution
	Slide 50:  Posterior Probability Distribution
	Slide 51:  Posterior Probability Distribution
	Slide 52:  Summary
	Slide 53:  Standard Fit
	Slide 54:  MCMC
	Slide 55:  Gaussian Processes
	Slide 56:  Principal Component Analysis
	Slide 57:  Likelihood with PCA and GP

