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/ubarev approach: Overview

The non-equilibrium state of the system is characterized by relevant observables {B,,} in addition to
the standard set of conserved ones. We look for the distribution which maximizes the information

entropy Sipr = _Tr{prel(t) In prel(t)}:
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the standard set of conserved ones. We look for the distribution which maximizes the information

entropy Sipr = _Tr{prel(t) In prel(t)}:

1
Dol (t) = 7@ e~ Zn Fn(t)Bn Zeo(t) = Tr{e‘ 2n Fn(t)Bn}’
re

where Lagrange multipliers F,(t) are determined by the self-consistency conditions

(Bn>t (Bn rel — Tr{prel (t)Bn}

According to the NSO method, the equations of evolution are given by

—(B )= llm % fdt e’ “OTr{pre (t)elH(t ~O/h[H, B, |etH(t- t)/h}

There is no unigue way to choose the relevant observables. In principle, all choices for the set of
relevant observables should give the same result, but in practice it is not the case.
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/ubarev approach: Model for

Here we assume the following:

* A state overpopulated by soft pions is formed at T < 74

* Fortf0 < 7 < 749 the collisions conserve the particle number, but evolve the distribution function
to a thermal equilibrium distribution (dominance of elastic collisions over inelastic ones)
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* A state overpopulated by soft pions is formed at T < 74

* Fortf0 < 7 < 749 the collisions conserve the particle number, but evolve the distribution function
to a thermal equilibrium distribution (dominance of elastic collisions over inelastic ones)

Under these assumptions the pion number is quasi-conserved and can be chosen as a relevant
observable. Then, the new self-consistency condition is:

(Nn 1t‘el — <Nn>t

The non-equilibrium process of pion production within the Zubarev approach of the non-equilibrium
statistical operator leads to the appearance of a non-equilibrium pion chemical potential
[Particles 2020, 3, 380—-393]
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Blast-Wave Model

Here we consider chemical freeze-out on the cylindrical boost-invariant hypersurface at constant

freeze-out proper time

1 t+z
Y* = (tcoshn,rcos@,rsing,tsinhn),wheret =+/t? — z? = const. and n =§lnt—z

(e
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with the following velocity profile
u* = (cosh p coshn,sinh p cos ¢, sinh p sin ¢, cosh p sinhn), where p = atanh[v(r/R)"]
pHdx, f(x*, p*u,) one finds

. d3N —
Then with the help of the Cooper-Frye formula E FEEl szO

d®N;
dprdydipdrdnde

my cosh p cosh(y —n) — pr sinh p cos(p — Y) — y; -1
& trprmy cosh(y —n) | exp +1
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Here we consider chemical freeze-out on the cylindrical boost-invariant hypersurface at constant

freeze-out proper time

1 t+z
Y* = (tcoshn,rcos@,rsing,tsinhn),wheret =+/t? — z? = const. and n =§lnt—z

with the following velocity profile
u* = (cosh p coshn,sinh p cos ¢, sinh p sin ¢, cosh p sinhn), where p = atanh[v(r/R)"]

3
ng = fzpo ptdz, f(x*,p*u,) one finds

Then with the help of the Cooper-Frye formula E

d®N;
dprdydipdrdnde

my cosh p cosh(y —n) — pr sinh p cos(p — Y) — y; -1
& trprmy cosh(y —n) | exp +1

T,R, T, u,;, v and n are free model parameters
In some cases, the overall normalization is defined
with the combination TR?
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Nalve Model

Global Blast-Wave fit to ALICE data
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Nalve Model
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parameters u, and ug one
can achieve much better
agreement between model
and experimental data
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collisions are not in the
model

Thermal o
particle =i %
generator  smash

Afterburner instead of
soIving generalized kinetics!
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Bayesian Inference

Bayes theorem:
P(B|A)P(A4)
P(B)

P(A|B) =
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Bayesian Inference

Bayes theorem:
P(B|A)P(A)

PAIB) = —— =

Suppose we have a model which for an input parameter vector X = (xq, ..., X,,) gives an output
y = y(xX) = (Y1, ..., V). We want to find the “optimal” value of X to describe the experimental

data y°bs
L(-’ *obs)P(x)
P(yobs)

P(Xl *obs) — (*; yobs) X P(D_C))
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Bayes theorem:
P(B|A)P(A)
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Suppose we have a model which for an input parameter vector X = (xq, ..., X,,) gives an output
y = y(xX) = (Y1, ..., V). We want to find the “optimal” value of X to describe the experimental

data y°bs
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Prior
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Suppose we have a model which for an input parameter vector X = (xq, ..., X,,) gives an output
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data y°bs
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Bayesian Inference

Bayes theorem:
P(B|A)P(A)

PAIB) = —— =

Suppose we have a model which for an input parameter vector X = (xq, ..., X,,) gives an output

y = y(xX) = (Y1, ..., V). We want to find the “optimal” value of X to describe the experimental
data y°bs

L(-’ *obS)P(x)
2.2 b -
P(yObS) \ ( 'yo S)|X|P(x?

Likelihood Prior
If we know mean values and variance, then the likelihood takes the form of multivariate
Gaussian

P(Xl *obs) —

£(%57%) = ——=exp (—%(ﬁf’bs—m)Tz-l (?"”5—37(9?))>
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Bayesian Inference Workflow

: Choose prior and Produce train &
Define the model > > L
observables validation data sets

Reduce dimensionality Train and validate
with PCA GP emulators

Sample posterior I Find MAP & Validate the result
distribution with MCMC (Closure test & MAP validation)

Oleksandr Vitiuk Particle Spectra Phenomenology

Validation step




Model Setup

" - e Blast-Wave thermal particle generator model

g ) S with SMASH afterburner

§ § * Uniform prior:

= o = o T € [5;15] fm/c
R € [6;15] fm
- T € [145;165] MeV

3 3 v € [0.65; 0.9]

£ £ n € [0.3; 1.0]

. € [0;137.9] MeV
e QObservables:p,p,tt,n,K*, K~ spectrain 0-5%
" . Pb-Pb@2.76 TeV collisions for p; < 2 GeV/c

. 5 | ¢ 200 training and 50 validation data sets

.., « 10PCs

%m_l_ . * Kernel: K(x;, x;) = 03 exp[ (i xz]) + 6,,6;

o o 10000 MCMC samples
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Posterior Probability Distribution
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Posterior Probability Distribution
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Posterior Probability Distribution
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The non-equilibrium process of pion production within the Zubarev approach of
the non-equilibrium statistical operator leads to the appearance of a non-
equilibrium pion chemical potential

Naive model gives the value of effective chemical potential close to the pion mass
and can describe data well, but it does not resonance decays and final state
interactions

More sophisticated model gives much smaller, but non-zero value of pion
chemical potential
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Standard Fit

R L I L L L B = B R R R AR AR AR A ' fit — Bl Wave m |
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3 F i, N B.=0882+0004 3 Prdpr T T
Q10 T N n=0.712+0.019 - _ _ .
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s F i T ALICE [PRC 88, 044910 (2013)]
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MCMC

Problem: We don’t have an analytic form of y(xX) = we don’t have an analytic expression for L(ic’; )7"”5)

Solution: Markov Chain Monte-Carlo Sampling

Example: Metropolis-Hastings algorithm
Draw a proposal for X; = x';,; from the proposal distribution Q

- > , s _L(f’i+1;370bs)xp(f’i+1) Q(X1i41-%;)
Compute acceptance probability A(X; = X';+1) = min (1, L(Z7P)xPE)  Q—Frire)

Pick a random number r from uniform range [0, 1]
If A(x; > x';11) > r, accept the proposed move and set X;,; = X';;. Otherwise set X;.; = X;
Seti =1+ 1 and repeat the process

A N
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Gaussian Processes

Problem: MCMC requires many model evaluations to reconstruct the likelihood function.

Solution: Emulate model using Gaussian processes
Gaussian process - a stochastic process, in which every finite set {Y;}]%, is a multivariate Gaussian
random variable N (i, X). Approach based on the important property of multivariate normal

distribution:
Let A~ N(ii,2). IfA' =TA+c,then A’ ~ N(Tji + ¢, TETD).

J-n(eafr wrel el

"N [0] Sxtx* — Lx*xZxxixx* O
O ’ O ZX’X

fr=f—Sexdzkl = f| _ ~NEexExkyZex = TeaZikDon)

We need to know the covariance matrix for the given data set. It is parametrlzed in terms of
dlnP(Y|6
hyperparameters 9 Zi]_ _ K(xl-,xj; 0) N dé | )
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Principal Component Analysis

Problem: GP can take a multidimensional input, but the output is always a scalar.
M observables = M GP emulators. Typical order is 0(100) observables.

Solution: Dimension reduction via Principal Component Analysis

o (s
1. Let us define the matrix M;; = il J(z_ Y, ¢ = MTM — m x m covariance matrix
l

2. Sort eigenvalues A; and eigenvectors v; of matrix C in descending order of A;
3. Keep p first components which together explain the desired fraction of total variance
4

I/pz[ﬁl ﬁp]_)fzj;v; 5/)=ZI/pTJ ZzzllpszI/p

102_; 1.0 4

o
o

101 -

Variance

Fraction of total variance
o o
F =Y ()]

o
N}

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
PC index The first n PC
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Likelihood with PCA and GP

Define your Choose prior and Produce train & Reduce dimensionality
model observables validation data sets with PCA

Train and validate Sample posterior Find MAP & Validate the result
GP emulators distribution with MCMC (Closure test & MAP validation)

Likelihood with GP emulators and PCA:

1 1
L ->; SobsY) — __ [ z0bs _ =2
(x ¢ ) \/|27T(Zexp + z:GP)l p( 2 (Z “ap

—>ObS =obs V Zexp — V;,TZVP
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