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Motivation



QGP evolution starts far from equilibrium

* Characteristics of heavy-ion collisions:

Speed ~ 1 fast

initial stage QGP hadronic freezeout

Energy ~ 10 — 10* GeV high

Collision time ~ 0.01 — 1 fm short ' '

Size ~ 10 fm small

Particles ~ 10 — 10* few History of the little bang



QGP is well described by hydrodynamics

* Flow collectivity manifests QGP as a nearly perfect fluid.
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e And even more:
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Density distribution in position space
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Hydrodynamics is believed to be
applicable near equilibrium
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Hydrodynamic attractor

o Attractor plays an important role to explain the success of hydrodynamics
even far from equilibrium.

rBRSSS Boltzmann AdS/CFT

10 . Ine

The onset of Initial information

0" order hydro = =

hydrodynamization g Order hydro - = - - humerical largely suppressed

order hydro

starts at very early time at later time

 Does attractor wash out everything”? Does attractor exist with less symmetries”?
Can we understand it better analytically?
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Attractors



Fluids In equilibrium: Euler equation

» Stress tensor is homogeneous in LRF.

€
" p boost w o w 7 7
L oyre = p — I, =euu” +pA
P

* Euler equation:

%T(’“(‘)’;:O — Oy =V-Jylyl where yw=(nen,..)

Conserved quantities evolve via advection & expansion.



Fluids near equilibrium: NS-like equations

e Stress tensor approximated by gradient expansion.

WY — THV 4 TRV
T = T T 4 . /

1 1 7
Ifl = —2not", o = ; AFCAY(O up + Ogu,) 3 0 - ul /

NB: there are infinite many equilibrium proxies
for a non-equilibrium state.

* Navier-Stokes(NS)-like (e.g., Burnett, BRSSS, etc.) equations:
%T’“’ =0 = oJywy=V-Jly,Vy,...] where w=(nenr,...)

Conserved quantities evolve via advection & expansion, as well as dissipation & diffusion.



Fluids far from equilibrium: MIS-like equations

e Stress tensor involves non-hydrodynamic DOFs for UV completion.
E.g., 0+1D boost-invariant conformal fluids:

€ ) pr=p+ap=p—m/l2,
T
T 7}”6’5 + a4+ ... = D7 pL:p+JZ':77
PL NB: z vanishes in equilibrium

 Muller-Israel-Stewart(MIS)-like (e.g., Maxwell-Cattaneo, DNMR, BDNK etc.) equations:

0,I"=0 = (10, +De+p+n = coupled 1st order ODEs
4t
MIS 70 +1+—
37
h =3p=C,T" —4CCT3 =CT .
where e = 3p = C, N =2CGT .,
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Hydrodynamic attractors

* |n terms of w = 7T, equation for pressure anisotropy A(w) = (P, — P,)/P decouples:

A(w) 1 , 3
C.{|1+ > wA'(w) + ECTA(W) + EWA(W) —12C, =0

decoupled 1st order nonlinear & inhomogeneous ODE

with asymptotic solutions

A(w)=%(l+@(w)) + 6\/Cn/CT+@(W), w — 0

longitudinal expansion dominates + early-time attractor

w="TT

Heller et al, 1503.07514; Jankowski et al, 2303.09414
C

8C;7 2CT 3w =N
A(w) = (1 + + @(W‘Z)) +Ce Cws (1 + @(w_l)) + ..., W—> 00

W 3w

hydrodynamic (late-time) attractor + non-hydrodynamic (transseries) modes.
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Alternative formulation of attractors

* In the presence of additional scales other than 7, ris more convenient as

dynamic variable than w = =T.
A(7)

t1T'(7) + T(T)(% ~ g ) =0

two coupled 1st order ODEs
(one 2nd order ODE)

2
C.tA'(t) + ECTA(T)z + 7T(1)A(z) — 8C, = 0

o System of n coupled linear ODEs — one nth order ODE:

1f N2 2 C
Ty 4 oD (2 + TTC(T) ) Py 4 207 4 (1 _ —”) T(z) = 0

1(7) 3 3C., 97 C,

T

similar equation can be obtained for A(7)
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Early-time attractor

° Early-time attractor solutions: u: integration constant; a = \/Cﬂ/CT

T(@) ~ p(ur) 5 ( 1+ ) tOwun)i® ), A@ ~6a| 1+ ) alP(ur)i

n=1 n=1

Generic solutions rapidly approach the attractor surface in phase space
(zT", T, r) at early time.
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Later-time attractor

o Later-time asymptotic solutions

T(7) ~ A(Af)—é(l + ) t,§°°>(Af)—%n> + Co(Ar) 500 73097 (1 4 6((Ar)™23)) + ...

n=1

A7) ~ 8c,7(AT)—%(1 + ) a,§°°>(Af)—§n> + CL (AT 0T (1 4 6((AD)23)) + ...

n=1

hydrodynamic attractor + non-hydrodynamic (transseries) modes.

A, C_: independent integration constant

NB: suppression is mild since At » oo; integration constants C__ = C_ (7).
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Perturbations



Linearized modes
e Linearization of MIS theory around the attractor for 6 independent fields:
(8T, 50, 5w, 67, , 670, 57,)(T, X)

where 60 = 0,0u; and 6w = €;,0;0u;, i = 1,2.

The translation invariance symmetry in transverse plane is broken.

* The dynamic system reduces to a set of linear 2nd order ODEs for
d(t,x) = (67T, 00, ow)(t,X) —> ¢(7,K) = (0T, 00, dw) = (6T/T, 60/k, dw/k)(7, K):

$"(z,K) + P, (7, K)p'(z, K) + Py(z, K)p(z, k) = 0

where P,, P, are block-diagonal-matrix coefficients.

NB: the 2nd order ODE for 6@ decouples from that for 57 and 50,
the latter can also be converted to a single 4th order ODE.
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Transverse dependence

* Transverse information is encoded in a finite set of Fourier modes (FFT).

T
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Transverse dependence

e Suppression for large kK modes and off-attractor perturbations:

6T (r, k) for different ky=k, (fm™1), start on attractor 6T (r, k) for different ky=k, (fm™1), start off attractor
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Observables



Late-time asymptotics

o Late-time asymptotic solutions perturbed around attractor:

5T =
~ 3 2/3
50 = Cj(A7) e =N 4 Cy(AD) T e AT te

. __3 (A3 . .
S50 = e 4CT( 7) (C5€ lakr_l_ C6elakr)
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2
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A, Gy, ..

—ic kt ic Kkt
C3€ a +C4€ * )

2
C%O:CT (AT)2/3 (

r ,—Iic kt 1 ic kt
Ce + C,e )

., C¢: Integration constants

NB: the solutions for 57%17 — 57rlj/T4 can be determined accordingly from 67, 50 and 5.
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The attractor is stable against transAverserdynamics; observables extracted from
the asymptotic data of (67, 60, 6w, oz;;) determined by (Cy, ..., Co)(K).
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Observables

* Linearized Cooper-Frye freezeout formula:

A

mJ_=

0.20
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particle distribution with different 5Tpeak(rl)

centrality dependence at different time
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time dependence at different centralities

— 0.6
— 0.5
— 04
0.3
0.2
0.1

b=6fm
b=8fm
4 —— b=10fm



Conclusion



Recap

* [ransverse dynamics can be described by perturbations around the attractor
background.

 The problem reduces to a set of linear ODEs which can be analyzed semi-
analytically.

 Physical observables are calculated by finite asymptotic data and FFT.

Outlook

o Systems with lesser symmetries.
e Systems with additional scales/DOF: jets, spin polarization, and noises.

e More...
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