Charm correlations XVI Polish Workshop on Relativistic Heavy-Ion Collisions

M. Gazdzicki, D. Kikoła, I. Pidhurskyi, L. Tinti

03.11.2023

preprint: arXiv:2305.00212

Overview

- 1 Standard picture of heavy-ion collission
- Probing QGP
- Simplified model
 - Three pictures of emission
- 4 Fisibility of the measurement
 - Requirements
 - Results of modeling
 - Fisibility

Standard picture of heavy-ion collission

- Initial state
 A hot dense medium, called as qurk-gluon plasa (QGP) is created.
- 2 Expansion stage The plasma expands, reaching hadronisation temperature $T_H \approx 150 Mev$.
- Madronisation
 The plasma is converted to hadrons and resonanses.
- Free-streaming stage Resonances decay; non-interacting hadrons freely stream in the vacuum to a detector.

Standard picture of heavy-ion collission

Heavy quarks in heavy-ion collission

Initial state

A hot dense medium, called as qurk-gluon plasa (QGP) is created.

The $q\bar{q}$ pairs are produced locally and in a limited number due to high energy threshold.

- **2** Expansion stage The plasma expand, reaching hadronisation temperature $T_H \approx$
 - The qq pair termalise with the medium.
- Hadronisation

150*Mev*.

- The plasma is converted to hadrons and resonanses.
- The flow and hadronisation (local statistical process) contributions give the momenta of charm hadrons.
- Free-streaming stage

 Personances desay: none

Resonances decay; non-interacting hadrons freely stream in the vacuum to a detector.

Hadrons carrying the heavy quarks soon decay.

Probing QGP

- \Rightarrow Heavy quarks can be used as a probe to study both formation and evolution of the QGP medium.
 - Azimuthal correlations in heavy-ion collisions at high energies were already addressed theoretically and applied by RHIC and LHC, e.g. study mechanism of jet supperssion, study of charm energy loss mechanism
 - .
 - This idea steems back to 1986 (J/Psi melting), maybe even earlier.
 - ullet We want to investigate a "locality" of $q\bar{q}$ pair production via momentum correlations between final state hadrons.

Probing QGP

Describing heavy-ion collisions / What we do

- Initial state (Glauber, Color glass, ...)
- Expansion of the QGP with hydrodynamics Classical approach, some of the inital correlations may be lost.
- Statistical hadronisation Similar: usually done vai relativistic Wigner, which depends on the one-particles reduced density matrix, no two-particles or higher orders.
- Hadron gass
- *⇒ Might not fit our purposes*

A $q\bar{q}$ -pair is created (at rest)

We distinguish 3 effective pictures of what q and \bar{q} quarks/hadrons undergo during QGP and thermalization phases by looking at the emissinon at freez-out hypersureface.

The q- and \bar{q} -hadrons with momenta inhertied from the corresponsing quarks (+ random perturbations due to hadronization and thermalization)

• Production of more than 1 $q\bar{q}$ pair within event is neglected:

$$\langle qar q
angle < 1.$$

• Charm hadrons are emitted from the freeze-out hypersurface of a spherical fireball undergoing Hubble-like expansion:

$$v = \frac{r}{t}, \quad u^{\mu} = \frac{x^{\mu}}{\tau} = \frac{x^{\mu}}{\sqrt{t^2 - r^2}},$$

where r is a distance from the center of the fireball.

• Freez-out hypersurface:

$$au= au_{ extsf{fo}}$$
 – QGP freeze-out time;

 $r = r_{\text{max}}$ – maximal radius of the fireball.

• At the freeze-out, hadron momenta are sampled from the Boltzmann distribution:

$$rac{d^3N}{dpd^3\Omega} \propto p^2 \exp\left(rac{\sqrt{m^2+p^2}}{T_{fo}}
ight),$$

where m is mass of a final state hadron, and T_{fo} is a kinetic freeze-out temperature.

• Finally, hadron momenta are boosted to the lab-frame.

Three pictures of emission

I. Local emission

The q- and \bar{q} - hadrons are emited from the same fluid cell.

- The average of their momenta is set by drift velocity of the cell.
- The difference in momenta is due to independence of their momenta in the rest frame of the cell

Three pictures of emission

II. Independent emission

The emission points are independent of each other.

• No correlation between momenta whatsoever.

Three pictures of emission

III. Correlated emission

We consider emission points to be correlated via a 3D Gaussian distribution with $\sigma_x = \sigma_y = \sigma_z = 2$ fm.

- Flow components of the momenta are different,
- but still correlated.

Thus this is an intermediate case:

- $\sigma \rightarrow 0 \Rightarrow local$ emission
- $\sigma \rightarrow \inf \Rightarrow independent \text{ emission}$

Fisibility of the measurement

Requirements

- We can focus on the lightest of the heavy quarks, c, and the lightest open charm hadron, namely D^0 meson.
- $\langle c\bar{c}\rangle < 1$ to suppress production of multiple $c\bar{c}$ pairs per event, which could wash out pair-wise correlations.
- Low energy is needed in order avoid trivial correlations due to momentum conservation.
- ullet High acceptance of the detector is necessary because we need to reconstruct both hadrons $(D^0$ and $\bar{D}^0)$ within the event.

Model predictions for $\langle c\bar{c}\rangle$ yield in Pb+Pb collisions at top SPS energy (150*A* GeV/*c*)

NA61/SHINE detector layout

Fisibility of the measurement

Results of modeling

Estimates for $D^0 - \bar{D}^0$ correlations from simulated 10⁷ events in Pb+Pb @ 150A GeV/c

Fisibility of the measurement

Fisibility

Estimates for the duration of a data-taking period needed to collect 1000 $D^0\bar{D^0}$ -pairs; and the ratio of the number of produced $c\bar{c}$ pairs to all $c\bar{c}$ combinations (NA61/SHINE, Pb+Pb @ 150A GeV/c):

	$\langle car{c} angle = 0.1$	$\langle c\bar{c}\rangle = 0.2$	$\langle c\bar{c}\rangle = 0.5$	$\langle car c angle = 1$
1 kHz	1000 days	500 days	200 days	100 days
10 kHz	100 days	50 days	20 days	10 days
N_{pair}/N_{comb}	91%	83%	66%	50%

