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At the origin, there is the optical fibre…

Cladding

Core

125 mm
ncore > ncladding

 Fibres are small and can be seamlessly integrated in a structure and the 
environment

 Fibres are chemically inert and electrically insulating

 Fibres are extremely transparent (50% light remaining after 15km)

 Fibres do not distort signals (1 THz over 1000km) 

 Fibres are green: they are made from a very abundant
and widespread raw material: silica
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Different types of guiding have emerged

Index
guiding

Effective
index

guiding

Antiresonant
guiding

Photonic
bandgap
guiding

• Zero dispersion in the visible
➔ Supercontinuum generation

• Endlessly single mode fibres

• Small mode area
➔ Enhanced nonlinearities

• Large mode area
➔ Decreased nonlinearities

• Guiding in air, fluids and vacuum
➔ Absence of dispersion
➔ Absence of nonlinearities
➔ Interaction in gases & liquids

• Prospect to overcome the loss 
floor of silica
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Fibres dedicated to pressure sensing

The isotropic hydrostatic pressure causes an asymmetric deformation of a fibre designed 
with an anisotropic profile ➔ Birefringence is modified by pressure

Photonic crystal fibre
designed for optimised response 

Side-hole fibre
designed for simplified fabrication

➢ Strong response

➢ High loss

➢ Poor uniformity

➢ High cost

➢ Good response

➢ Low loss

➢ Good uniformity

➢ Low cost
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Distributed birefringence change vs Pressure
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Distributed birefringence change vs Pressure
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(a) (b)

Pressure and temperature response along the 2 polarisations

148.6 MHz/bar

-10.4 MHz/bar
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Index Guiding vs Photonic Bandgap Guiding

Light is essentially in SiO2 Light is essentially in air

A tiny fraction propagates in SiO2 (~1%)

Loss limited by surface roughness
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Index Guiding vs Photonic Bandgap Guiding

Structures have evolved to 
decrease the fraction of 

light in SiO2

Light is essentially in air

A tiny fraction propagates in SiO2 (~1%)

Loss limited by surface roughness
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Preparation of all-fibre absorption cells

The arc-fusion splice requires splicing at atmospheric pressure, but
this means that the low-pressure gas inside the PCF will be
contaminated by air.

The solution is to use the high permeability of helium through silica:
we insert high-pressure (~ 2 bar) helium before making the splice.
Helium will diffuse out of the silica walls in 1-2 hours.

P. S. Light, F. Couny, and F. Benabid, "Low optical insertion-loss and vacuum-pressure all-fiber acetylene

cell based on hollow-core photonic crystal fiber," Opt. Lett. 31, 2538-2540 (2006)

SMF DCF                                     PCF                                    DCF SMF

Losses:  1dB    4dB 1dB/m                            3dB    1dB
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Preparation of all-fibre absorption cells

P. S. Light, F. Couny, and F. Benabid, "Low optical insertion-loss and vacuum-pressure all-fiber acetylene

cell based on hollow-core photonic crystal fiber," Opt. Lett. 31, 2538-2540 (2006)

SMF DCF                                     PCF                                    DCF SMF

Losses:  1dB    4dB 1dB/m                            3dB    1dB
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Preparation of all-fibre absorption cells

P15

P14

SMF DCF                                     PCF                                    DCF SMF

Losses:  1dB    4dB 1dB/m                            3dB    1dB
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Preparation of all-fibre absorption cells
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Clear interest for opto-acoustic interactions in gases
Hollow core fibres have a transparent and bright future:

o Will probably outperform silica fibres in term of loss
(currently < 1 dB/km)

o Higher power handling capability
(no nonlinear effect)

o No dispersion, broader spectral range

o Low latency

➔ The possibilities for optical signal processing are much limited, accordingly! 

If stimulated Brillouin scattering could be activated in gas
➔ a wide choice of all-optical interactions could be implemented:

• Amplification & lasing

• Slow & fast light

• Selective spectral filtering

• Optical storage

• All-optical calculus

• Distributed sensing, etc…

If observable, will the interaction be large enough to offer any interest?
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Polarisation force & Electrostriction

Optical trapping & tweezers
Nobel Prize 2018 

A dielectric object in a non-uniform field feels
a force toward regions of higher field strength.

2  F E E E I

Non-
uniformity
strength

Induced
charges

Force
strength
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The Clausius-Mossotti relation - Elasto-optic effect
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 : Material density
NA : Avogadro’s constant
 : Molecular polarisability
M : Molar mass

For a tenuous medium like a gas (n ~ 1) : 1
2


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M 2


  An N

M
➔

A large density change leads to a proportionally large change in refractive index
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From electrostriction to dynamic grating

Electrostrictive force Refractive index change

Medium densification

Solids: −

Gases: +

Solids: +

Gases: −
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Observation of stimulated Brillouin scattering in gas

All results were obtained in a 
50 metre gas-filled hollow-core 
photonic bandgap fibre
(core size 10μm)

Brillouin linear gain in silica fibres is 100X larger!

50m HC-PCF

1m SMF

Gas inlet/outlet

9dB
round trip loss

18
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Pressure dependence

Opto-acoustic strength depends linearly on pressure:
2


  An N P

M

Acoustic lifetime also depends linearly on pressure:  A P

Pressure squared!

➔ Gain
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A hollow-core fibre 
can sustain a 
pressure up to 

1000 bar and more.
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Amplification
Pump ProbeGas molecules
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Gas Brillouin Fibre Laser
ECDL

AOM

1 2

3

50 m, 41 bar CO2
HC-PCF

RF spectrum analyser

Pump

Polarisation
controller

Photodetector

95% 5%

Threshold: 33.2 mW

Pump power inside the HC-PCF (mW)
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Influence of the gas species

Measured Brillouin gains
at 24°C and 10 bar:

At first glance, gases with complex and heavy molecules should deliver more gain.

The Brillouin gain depends on
several material parameters:

• Molecular mass

• Molecular size

• Viscosity

• Polarisability

22
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Influence of the gas species

Measured Brillouin gains
at 24°C and 10 bar:

At first glance, gases with complex and heavy molecules should deliver more gain.

But: • May quickly turn into liquid phase at higher pressure.

• May show spectral absorption lines, moreover significantly broadened at high pressure

The Brillouin gain depends on
several material parameters:

• Molecular mass

• Molecular size

• Viscosity

• Polarisability

23
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Strain-Insensitive Distributed Temperature Sensing

HC-PCF

Distance (m)

Pseudo-random
phase-coded Brillouin 
correlation-domain

analyser
(Spatial resolution ~1-2 cm)

A. Zadok et al
Random-access distributed fiber sensing

Laser & Photonics Reviews 6, L1–L5 (2012).

HC-PCF

Temperature (   )C

No
strain
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Strain-Insensitive Distributed Temperature Sensing

Pseudo-random
phase-coded Brillouin 
correlation-domain

analyser
(Spatial resolution ~1-2 cm)

A. Zadok et al
Random-access distributed fiber sensing

Laser & Photonics Reviews 6, L1–L5 (2012).

With
strain
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Brillouin amplification using evanescent field in gas

ECDL

AOM

1 2

3 10 cm nanofibre gas cell

RF spectrum analyser

Pump

Polarisation
controller

Photodetector

Polarisation
controller

+110 MHz

Collaboration with J.-C. Beugnot et al, FEMTO Institute, Besançon, France
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Brillouin amplification using evanescent field in gas
Collaboration with J.-C. Beugnot et al, FEMTO Institute, Besançon, France
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Final words
SBS in 
silica

SBS in 
chalcogenide

Raman 
gain in H2

at 10 bar

Forward 
Brillouin 

gain in air

SBS in N2

at 1 bar
SBS in N2

at 1000 bars

Linear gain 
(m/W)

3×10-11 6×10-9 4.2×10-12 4×10-14 3×10-14 3×10-8

Stimulated Brillouin 
scattering in gases can
outperform any existing
nonlinear amplification!
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