Microstructured optical fibres: a novel tool to make light interact with gas efficiently

Prof. Luc THÉVENAZ

Ecole Polytechnique Fédérale de Lausanne Group for Fibre Optics

Luc Thévenaz

Fibres dedicated to pressure sensing

The isotropic hydrostatic pressure causes an asymmetric deformation of a fibre designed with an anisotropic profile **Birefringence is modified by pressure**

Photonic crystal fibre designed for optimised response

- > Strong response
- High loss
- Poor uniformity
- ➤ High cost

Side-hole fibre designed for simplified fabrication

- Good response
- Low loss
- > Good uniformity
- Low cost

Luc Thévenaz

Distributed birefringence change vs Pressure

Luc Thévenaz

Index Guiding vs Photonic Bandgap Guiding

Light is essentially in SiO_2

Light is essentially in air A tiny fraction propagates in SiO_2 (~1%) Loss limited by surface roughness

Luc Thévenaz

Index Guiding vs Photonic Bandgap Guiding

Structures have evolved to decrease the fraction of light in SiO_2

Light is essentially in air A tiny fraction propagates in SiO_2 (~1%) Loss limited by surface roughness

Presentation EPFL - Group for Fibre Optics

Luc Thévenaz

Preparation of all-fibre absorption cells

The solution is to use the high permeability of helium through silica: we insert high-pressure (~ 2 bar) helium before making the splice. Helium will diffuse out of the silica walls in 1-2 hours.

P. S. Light, F. Couny, and F. Benabid, "Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber," Opt. Lett. 31, 2538-2540 (2006)

PFL Presentation EPFL - Group for Fibre Optics Luc Thévenaz

Preparation of all-fibre absorption cells

Luc Thévenaz

Clear interest for opto-acoustic interactions in gases

Hollow core fibres have a transparent and bright future:

- Will probably outperform silica fibres in term of loss (currently < 1 dB/km)
- Higher power handling capability (no nonlinear effect)
- No dispersion, broader spectral range
- Low latency

The possibilities for optical signal processing are much limited, accordingly!

If **stimulated Brillouin scattering** could be activated in gas

➔ a wide choice of all-optical interactions could be implemented:

- Amplification & lasing
 - Slow & fast light
- Selective spectral filtering
- Optical storage All-optical calculus
- Distributed sensing, etc...

If observable, will the interaction be large enough to offer any interest?

Gain obtained along a 50m hollow-core fibre filled by CO₂ at 41 bar

22

 $\eta_{\rm s}[10^{-5}{\rm Pa\cdot s}]$

1.88

2.86

2.71

Presentation EPFL - Group for Fibre Optics

Gas

 CH_4

 CO_2

 N_2

Name

Methane

Nitrogen

Carbon dioxide

Luc Thévenaz

Influence of the gas species

The Brillouin gain depends on several material parameters:

• Molecular mass 🦯

Measured Brillouin gains at 24°C and 10 bar:

- Molecular size 🗡
- Viscosity 💊
- Polarisability 🗡

Gas	Name	$\nu_{\rm B}[{\rm MHz}]$	$\Delta \nu_{\rm B}[{\rm MHz}]$	$\mathrm{G}[\mathrm{m}^{-1}\mathrm{W}^{-1}]$
N_2	Nitrogen	451	41	0.025
CH_4	Methane	580	40	0.034
CO_2	Carbon dioxide	351	21	0.105

 $V_a[m/s]$

466

354

280

m[g/mol]

16

28

44

d[pm]

400

370

232

At first glance, gases with complex and heavy molecules should deliver more gain.

At first glance, gases with complex and heavy molecules should deliver more gain.

- But: May quickly turn into liquid phase at higher pressure.
 - May show spectral absorption lines, moreover significantly broadened at high pressure

