
INTRODUCTION

Our main framework is Athena, which we are in the progress of 
migrating to become multithreaded for run-3 (main motivation: 
memory) 

‣ Our Athena repository is >1 million lines of python and ~4 
million lines of C++ 

‣ ~250 unique committers to master last year, ~30 commits 
per day 

‣ Of course we have a lot of software in other repositories, but 
these are much smaller (and less relevant for the current talk) 

‣ There are many ways to look at the ATLAS offline software and 
we could not come up with a meaningful unique diagram 

‣ Possible points of views:  

‣ Build-View 

‣ Components-View 

‣ (Coarse) Analysis Model View
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https://gitlab.cern.ch/atlas/athena


BUILD-VIEW OF ATHENA
▸ Disambiguation of Package: 

▸ Inside Athena: a directory containing a CMakeLists.txt file 
and typically a bunch of source file 

▸ Can recompile one or few packages for development 
or debugging 

▸ Allows us to build subsets of the source-tree for 
dedicated workflows: 

▸ AthSimulation, AthGeneration, AthDataQuality, 
AthAnalysis 

▸ For an external  packaging system (like spack),  Athena is 
one package (like ROOT, or geant4) 

▸  We have detailed instructions on how to build Athena: 

▸
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https://atlassoftwaredocs.web.cern.ch/guides/build_release/

ATHENA 
(ATHSIMULATION, ATHANALYSIS ..)  

https://atlassoftwaredocs.web.cern.ch/guides/build_release/


COMPONENT VIEW 

▸ Athena is based on 
GAUDI, so uses similar 
component 

▸ Algorithms, Tools 
and Services 

▸ Also, handles and a 
scheduler (see later)
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Building blocks of Gaudi
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o Algorithm
o Main building block of the Event Loop
o Called once per event

o AlgTool
o A plugin that helps an Algorithm perform 

some action

o Service
o A plugin providing a common service to 

multiple components
o Examples: Transient Data Store, Logging 

Service, Random Number Service

Intro to Gaudi/Athena

http://www.apple.com/uk


COMPONENT VIEW 4
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SERIAL ATHENA (RUN1/2):
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ATHENAMT (RUN 3):
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Algorithm execution order determined by 
a scheduler.

SIDE REMARK:

THE CONCEPTS OF GAUDIHIVE/ATHENAMT HAVE PROVEN 

VERY USEFUL TO INSULATE JOHN DOE PHYSICIST FROM THE 
NITTY-GRITTY DETAILS OF THREAD-SAFETY 

ALGO1/EVT1



SIMPLIFIED FLOWCHART WITH CALIBRATION LOOP 5
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ANALYSIS MODEL 7
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A (LITTLE BIT) MORE ON ATHENAMT

▸ AthenaMT uses Intel Threaded Building Blocks (TBB) for 
thread management  

▸ TBB hidden from developers 

▸ Configuration, Initialization and Finalization are performed 
serially in the “master” thread  

▸ Only Algorithm::execute() is concurrent 

▸ Algorithms are only scheduled when their input  data 
becomes available (rely on DataHandles to express 
dependencies) 

▸ Several instances of the same Algorithm can coexist (via 
cloning) 

▸ Multiple events can be executed concurrently 
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Data Flow precedence rule



BUILD SYSTEM

▸ We current build ~20 branches per night 

▸ Run unit tests, local longer tests, and 
grid-based large statistics test 

▸ Run CI on every merge request: 

▸ currently using Jenkins, but 
investigating moving to GitlabCI
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