
INTRODUCTION

Our main framework is Athena, which we are in the progress of
migrating to become multithreaded for run-3 (main motivation:
memory)

‣ Our Athena repository is >1 million lines of python and ~4
million lines of C++

‣ ~250 unique committers to master last year, ~30 commits
per day

‣ Of course we have a lot of software in other repositories, but
these are much smaller (and less relevant for the current talk)

‣ There are many ways to look at the ATLAS offline software and
we could not come up with a meaningful unique diagram

‣ Possible points of views:

‣ Build-View

‣ Components-View

‣ (Coarse) Analysis Model View

1

C++

Python

https://gitlab.cern.ch/atlas/athena

BUILD-VIEW OF ATHENA
▸ Disambiguation of Package:

▸ Inside Athena: a directory containing a CMakeLists.txt file
and typically a bunch of source file

▸ Can recompile one or few packages for development
or debugging

▸ Allows us to build subsets of the source-tree for
dedicated workflows:

▸ AthSimulation, AthGeneration, AthDataQuality,
AthAnalysis

▸ For an external packaging system (like spack), Athena is
one package (like ROOT, or geant4)

▸ We have detailed instructions on how to build Athena:

▸

2

LCG

ATLASEXTERNALS

GAUDI

Bu
ild

 b
y

AT
LA

S

ROOT, ETC

LCG ‘OVERRIDES’:
(EG GEANT4)

https://atlassoftwaredocs.web.cern.ch/guides/build_release/

ATHENA
(ATHSIMULATION, ATHANALYSIS ..)

https://atlassoftwaredocs.web.cern.ch/guides/build_release/

COMPONENT VIEW

▸ Athena is based on
GAUDI, so uses similar
component

▸ Algorithms, Tools
and Services

▸ Also, handles and a
scheduler (see later)

3

Building blocks of Gaudi

2

o Algorithm
o Main building block of the Event Loop
o Called once per event

o AlgTool
o A plugin that helps an Algorithm perform

some action

o Service
o A plugin providing a common service to

multiple components
o Examples: Transient Data Store, Logging

Service, Random Number Service

Intro to Gaudi/Athena

http://www.apple.com/uk

COMPONENT VIEW 4

ALGORITHM3

ALGORITHM2

ALGORITHM1

ALGTOOL1

SERVICE1

ALGORITHM4

Ev
en

t L
oo

p

SERVICE2

Dedicated Service to hold event
data

Dedicated Algorithms (&
services) for I/O

SERIAL ATHENA (RUN1/2):

ALGO3/EVT1

ALGO3/EVT2

ALGTOOL1

SERVICE1

ALGO4/EVT1

Ev
en

t L
oo

p

SERVICE2

ATHENAMT (RUN 3):

ALGO1/EVT2

ALGO2/EVT2

ALGO2/EVT1

ALGO4/EVT2

Algorithm execution order determined by
a scheduler.

SIDE REMARK:

THE CONCEPTS OF GAUDIHIVE/ATHENAMT HAVE PROVEN

VERY USEFUL TO INSULATE JOHN DOE PHYSICIST FROM THE
NITTY-GRITTY DETAILS OF THREAD-SAFETY

ALGO1/EVT1

SIMPLIFIED FLOWCHART WITH CALIBRATION LOOP 5

SFO1

SFO2

SFO3

SFO5
ESD HIST

ESD TAG

Express	

Processing

RAW	

Merging Bulk	

Processing

Point	1	

48h	Delay

Calibration	&	DQ	output

Reduced	physics	output

TAGESD

AOD

HIST

Many	DESDs

New	calibration

Exp
ort

Express		

stream

Physics	

streams

Exp
ort

Derivation	

Fram
ew

ork

SFO1

SFO2

SFO3

SFO5
ESD HIST

ESD TAG

Express	

Processing

RAW	

Merging Bulk	

Processing

Point	1	

48h	Delay

Calibration	&	DQ	output

Reduced	physics	output

TAGESD

AOD

HIST

Many	DESDs

New	calibration

Exp
ort

Express		

stream

Physics	

streams

Exp
ort

Derivation	

Fram
ew

ork

WALTE
R CREAT

ED TH
IS DIAGRAM FO

R A TALK IN 201
0. I

T’S STILL

(LA
RGELY

) VA
LID

!

SIMPLIFIED FLOWCHART WITH CALIBRATION LOOP 6

ANALYSIS MODEL 7

�̥Ͼ θξΎ̙ϟ̐ϑ͖Ύ; ϾΎξͬ͂ͱΎϾχ ˨;̙ ͂Ύξͻ˨ϑχ

4�°4࡙ÚmĮëࡇ
ߜߡ Ǻ$ࡕƚʲƚȘɾࡈ żȩȒųǞȘƚƇ
ɯǞȘǃȀƚ 4�°4 ǀȩɟȒŏɾ ǀȩɟ࡫
ࡈ+� ųʕɾ ŏȀɯȩ ࡈ࡬�÷�4 �°4
ƚʲƚȘɾ Ƈŏɾŏ ȒȩƇƚȀ
࡬�C4࡫

4�°4࡙ÚmĮë�v÷Cࡇ
ߜߝ Ǻ$ࡕƚʲƚȘɾࡈ ʲƚɟʿ
żȩȘƇƚȘɯƚƇ ŏȘƇ
żŏȀǞųɟŏɾƚƇ ȩųǲƚżɾɯࡈ ʲƚɟʿ
ǞȒɔȩɟɾŏȘɾ ǀȩɟ mࡷ��m+ࡈ
�°4 ȩɟ ȘɾʕɔȀƚ C4ࡈ�
ǞƇƚŏȀ ǀȩɟ ĭ+ŏżǕƚࡕ��4°

ɾȩƇŏʿ࢈ɯ 4�°4ɯࡇ
ëǞǃȘǞ˙żŏȘɾȀʿ ɟƚƇʕżƚ
ȘʕȒųƚɟ ȩǀ ɾȩƇŏʿ࢈ɯ
4�°4ɯ

�°4ɯࡇ
�ŏɟǃƚɟ ǀɟŏżɾǞȩȘ ȩȘȀʿ
ŏʲŏǞȀŏųȀƚ ȩȘ ÷�ÚC

ߠߝࡕߥ

FOR RUN-3, MOVING TO NEW PRODUCTION
WORKFLOW AND ANALYSIS DATA FORMATS IN

RUN-3

A (LITTLE BIT) MORE ON ATHENAMT

▸ AthenaMT uses Intel Threaded Building Blocks (TBB) for
thread management

▸ TBB hidden from developers

▸ Configuration, Initialization and Finalization are performed
serially in the “master” thread

▸ Only Algorithm::execute() is concurrent

▸ Algorithms are only scheduled when their input data
becomes available (rely on DataHandles to express
dependencies)

▸ Several instances of the same Algorithm can coexist (via
cloning)

▸ Multiple events can be executed concurrently

8

Data Flow precedence rule

BUILD SYSTEM

▸ We current build ~20 branches per night

▸ Run unit tests, local longer tests, and
grid-based large statistics test

▸ Run CI on every merge request:

▸ currently using Jenkins, but
investigating moving to GitlabCI

9

