
Efficient Analysis Facilities
EP R&D - Software WP

Jakob Blomer

2020-04-08

Analysis Challenge

2

● HL-LHC challenge: first major milestone on the way towards future accelerators and detectors
○ From 300fb-1 in run 1-3 to 3000fb-1 in run 4-6
○ 10B events/year to 100B events/year
○ Real analysis challenge depends on several factors: number of events, analysis complexity, number

of reruns, etc.
■ As a starting point, let’s prepare for ten times the current demand

● Developments in our favour
○ Experiment R&D on central, compact AODs,

e.g. CMS nanoAOD, ATLAS DAOD_PHYSLITE
1kB - 10kB per event

○ R&D on ROOT I/O throughput
■ Currently 100kB - 10MB/s per core
■ In the lab: 100MB/s per core

● Google: 200MB/s per core
● Faster storage devices: SSD, NV-RAM (~10x faster)

○ Too expensive for the grid, but not for HPCs
and dedicated analysis facilities

● Calls for major R&D and engineering on I/O subsystem and analysis user interface

Increase data throughput Increase analyst's throughput

R&D Programme on Efficient Analysis Facilities

3

1) Increase data throughput
○ Data format R&D
○ ROOT RNTuple is a research prototype for

next-generation event I/O
○ Expect ~25% smaller files,

x2-5 better single-core throughput on SSD
○ Promising first results, full exploitation

subject of the R&D programme

2) User interface R&D
○ RDataFrame introduced as ROOT’s

declarative analysis toolkit
○ Two major R&D challenges

i) Optimal translation to low-level
I/O routines

ii) Distributed execution engine:
how to run the analysis on my
laptop on O(1000) cores

Non-exhaustive list of R&D topics

4

● Direct access to object stores, e.g. Intel DAOS
● Integration of data decompression tasks into (experiment’s) MT frameworks

○ Big speed-up on laptops: all cores decompress
● Optimal data pipeline from RNTuple to numpy

○ Otherwise we risk wasting enormous resources on data transformation
● Lossy data compression: automatic choice of floating point precision (lead by FNAL and BNL)
● Automatically detect storage class for optimal access method (particularly difficult for remote I/O)
● Active exploitation of NV-RAM, e.g. for dynamically created index branches
● Understanding of throughput results in the lab vs. throughput results in production clusters
● Exploiting bulk I/O and vectorization with RDataFrame
● Application-assisted caching in analysis facilities (e.g. certain hot branches)
● Explore expressiveness of RDataFrame: which analysis building blocks can be described

(e.g. model building, data set management)

Background task: engineering work on RNTuple and RDF
E.g. visualization (RBrowser etc), RNTuple meta-data management, RDF connector to cluster
manager, format conversion utilities, testing I/O error cases and many more

Resources in 2020

5

● Vincenzo Padulano (PhD student)
○ Started in February, supervised by Enric Tejedor
○ Investigation on distributed data caching for analyses expressed in RDataFrame

■ pyRDF and Spark as technology basis

● New fellow
○ To be selected for Q2/2020, supervised by me
○ Expected milestone: prototype integration of RNTuple with Intel DAOS

■ Object store system for HPCs
■ ~230PB planned for Argonne HPC from 2021

● R&D hardware: Fast I/O development machine
○ To be purchased for Q2/2020
○ Access to latest SSDs and NV-RAM devices
○ For the time being, we use temporary hardware made available by openlab

RNTuple Integration with Object Stores: API

6

Modular storage layer that support files
as data containers but also file-less
systems (object stores)

Currently in touch with Intel DAOS

engineers on RNTuple integration

7

Cluster:
🔹 Block of consecutive complete events
🔹 Unit of thread parallelization (read & write)
🔹 Typically tens of megabytes

Page:
🔹 Unit of memory mapping or (de)compression
🔹 Typically tens of kilobytes
🔹 Naturally representable by an object, e.g. in

the DAOS object store (under investigation)

RNTuple Integration with Object Stores: Data Layout

Distributed data caching in an RDataFrame analysis

Cache input data that is being read during a distributed RDF analysis to the most
granular degree possible

Cache only what it’s actually read during the analysis:

● Cache only the processed branches
● Cache only the TTree clusters read by worker tasks

Goal: Speedup of a physics analysis, that is repeatedly run on the same data with
slightly different parameters each round.

8

How to cache TTree data?

Currently using PyRDF + Spark backend to create a set of tests for comparing

different tools/ways in which we could cache data:

1. TFilePrefetch: stores in a file the TBuffers that are read.

2. XRootD: ProxyPlugin feature for orchestrating a cache.

3. RDataFrame: Snapshot in parallel to the analysis.

4. Something more…?

9

Branch, ClusterGranularity

 FileGranularity

 Not presentGranularity

First Steps: TFilePrefetch

Toy example:

● Small Spark cluster (CERN
OpenStack VMs): 1 master and 3
workers.

● Simple analysis run with PyRDF

Input file from EOS is cached on one
worker.

10

Issues:

● Only one worker caches if running
analysis on multiple workers

● Doesn’t cache data ranges outside
of the first cluster

Possible bug in TFilePrefetch under
investigation.

Github repo

https://github.com/vepadulano/rdfrangecache

