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Analysis Challenge

e HL-LHC challenge: first major milestone on the way towards future accelerators and detectors
o From 300fb™in run 1-3 to 3000fb™ in run 4-6
o  10B events/year to 100B events/year
o  Real analysis challenge depends on several factors: number of events, analysis complexity, number
of reruns, etc.
m  As a starting point, let’s prepare for ten times the current demand
e Developments in our favour g, SPREMIERY AIRGNSMRE,
o  Experiment R&D on central, compact AODs, 1 . e ‘
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1kB - 10kB per event
o R&D on ROOT I/O throughput
m  Currently 100kB - 10MB/s per core
m Inthe lab: 100MB/s per core
e Google: 200MBY/s per core 3 b
e  Faster storage devices: SSD, NV-RAM (~10x faster) — 5 N
o  Too expensive for the grid, but not for HPCs Rl
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and dedicated analysis facilities
e Calls for major R&D and engineering on|l/O subsystem|and|analysis user interface
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R&D Programme on Efficient Analysis Facilities

2) User interface R&D

o  RDataFrame introduced as ROOT’s

declarative analysis toolkit
o  Two major R&D challenges
i)  Optimal translation to low-level

I/O routines
Distributed execution engine:
how to run the analysis on my
laptop on O(1000) cores

1) Increase data throughput

o Data format R&D

o ROOT RNTuple is a research prototype for
next-generation event I/O

o  Expect V25% smaller files,
x2-5 better single-core throughput on SSD

o  Promising first results, full exploitation i)
subject of the R&D programme
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| ROOT/ TTreeReader (zlib)
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Non-exhaustive list of R&D topics

Direct access to object stores, e.g. Intel DAOS
Integration of data decompression tasks into (experiment’s) MT frameworks

o  Big speed-up on laptops: all cores decompress
e Optimal data pipeline from RNTuple to numpy

o  Otherwise we risk wasting enormous resources on data transformation
Lossy data compression: automatic choice of floating point precision (lead by FNAL and BNL)
Automatically detect storage class for optimal access method (particularly difficult for remote 1/0)
Active exploitation of NV-RAM, e.g. for dynamically created index branches
Understanding of throughput results in the lab vs. throughput results in production clusters
Exploiting bulk I/O and vectorization with RDataFrame
Application-assisted caching in analysis facilities (e.g. certain hot branches)
Explore expressiveness of RDataFrame: which analysis building blocks can be described
(e.g. model building, data set management)

Background task: engineering work on RNTuple and RDF
E.g. visualization (RBrowser etc), RNTuple meta-data management, RDF connector to cluster
manager, format conversion utilities, testing I/O error cases and many more




Resources in 2020

e Vincenzo Padulano (PhD student)
o  Started in February, supervised by Enric Tejedor
o Investigation on distributed data caching for analyses expressed in RDataFrame
m pyRDF and Spark as technology basis

e New fellow
o To be selected for Q2/2020, supervised by me
o  Expected milestone: prototype integration of RNTuple with Intel DAOS
m  Object store system for HPCs
m "“230PB planned for Argonne HPC from 2021

e R&D hardware: Fast I/O development machine
o  To be purchased for Q2/2020
o  Access to latest SSDs and NV-RAM devices
o  Forthe time being, we use temporary hardware made available by openlab



RNTuple Integration with Object Stores: API

Modular storage layer that support files

ot iaton as data containers but also file-less

Reading and writing in event loops and through RDataFrame systems (object stores)
RNTupleDataSource, RNTupleView, RNTupleReader/Writer

Currently in touch with Intel DAOS
engineers on RNTuple integration

'Approximate translation between TTree and
Primitives layer / simple types RNTuple classes:
o R 1] el - : ; ’ .
Columns contammg elements of fundamental types (float, int, ...) TTree ~  RNTupleReader
grouped into (compressed) pages and clusters RNTupleWriter
RColumn, RColumnElement, RPage TTreeReader =~  RNTupleView
TBranch ~  RField
Storage layer / byte ranges TBasket ~ RPage
RPageStorage, RCluster, RNTupleDescriptor TTreeCache ~  RClusterPool
.




RNTuple Integration with Object Stores: Data Layout

. Dataset / File .
I 1
| " — —
Header Page C++ collections become offset columns Footer
; l struct Event {
Cluster int fId:
vector<Particle> fPtcls;
Approximate translation between TTree and RNTuple concepts: }:
Basket =~ Page struct Particle {
Leaf ~  Column float fE;
Cluster =~  Cluster vector<int> fIds;
};
Cluster: Page:

¢ Unit of memory mapping or (de)compression
¢  Typically tens of kilobytes
¢ Naturally representable by an object, e.g. in
the DAQOS object store (under investigation) 7
T

¢ Block of consecutive complete events
¢ Unit of thread parallelization (read & write)
¢  Typically tens of megabytes



Distributed data caching in an RDataFrame analysis

Cache input data that is being read during a distributed RDF analysis to the most
granular degree possible

Cache only what it’s actually read during the analysis:

e Cache only the processed branches
e Cache only the TTree clusters read by worker tasks

Goal: Speedup of a physics analysis, that is repeatedly run on the same data with
slightly different parameters each round.



How to cache TTree data?

Currently using PyRDF + Spark backend to create a set of tests for comparing

different tools/ways in which we could cache data:

1. TFilePrefetch: stores in a file the TBuffers that are read. ReghllElLY

XRootD: ProxyPlugin feature for orchestrating a cache.
RDataFrame: Snapshot in parallel to the analysis.

Something more...?
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First Steps: TFilePrefetch

Toy example:

e Small Spark cluster (CERN
OpenStack VMs): 1 master and 3
workers.

e Simple analysis run with PyRDF

4

Input file from EQOS is cached on one
worker.

Issues:

e Only one worker caches if running
analysis on multiple workers

e Doesn’t cache data ranges outside
of the first cluster
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Possible bug in TFilePrefetch under
investigation.

Github repo
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https://github.com/vepadulano/rdfrangecache

