Efficient Analysis Facilities
EP R&D - Software WP

Jakob Blomer

2020-04-08

Analysis Challenge

e HL-LHC challenge: first major milestone on the way towards future accelerators and detectors
o From 300fb™in run 1-3 to 3000fb™ in run 4-6
o 10B events/year to 100B events/year
o Real analysis challenge depends on several factors: number of events, analysis complexity, number
of reruns, etc.
m As a starting point, let’s prepare for ten times the current demand
e Developments in our favour g, SPREMIERY AIRGNSMRE,
o Experiment R&D on central, compact AODs, 1 . e ‘

e.g. CMS nanoAOD, ATLAS DAOD_PHYSLITE SEIESE ERSR RS Wik WEE ¥

1kB - 10kB per event
o R&D on ROOT I/O throughput
m Currently 100kB - 10MB/s per core
m Inthe lab: 100MB/s per core
e Google: 200MBY/s per core 3 b
e Faster storage devices: SSD, NV-RAM (~10x faster) — 5 N
o Too expensive for the grid, but not for HPCs Rl

Q.0E+34 L-ocheooi--- SN 0.1} K

3.0E434 ------i--

2.0E+434 -+

Luminosity [cm2s]

and dedicated analysis facilities
e Calls for major R&D and engineering on|l/O subsystem|and|analysis user interface

Year

Increase data throughput Increase analyst's throughput

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

3500

3000

- 2500

Integrated luminosity [fb!]

R&D Programme on Efficient Analysis Facilities

2) User interface R&D

o RDataFrame introduced as ROOT’s

declarative analysis toolkit
o Two major R&D challenges
i) Optimal translation to low-level

I/O routines
Distributed execution engine:
how to run the analysis on my
laptop on O(1000) cores

1) Increase data throughput

o Data format R&D

o ROOT RNTuple is a research prototype for
next-generation event I/O

o Expect V25% smaller files,
x2-5 better single-core throughput on SSD

o Promising first results, full exploitation i)
subject of the R&D programme

. 105 SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019
é 1: ‘ 1‘ : e - READ throughput LHCb OpenData, warm cache
2 ©9000
i ‘:é: soooi— (] wrcomoressea
000 =2 [compreses

N
CULUINUWO N » O ®

| ROOT/RDataFrameMT/no-HT (zlib)
ROOT / RDataFrameMT (zlib)

| ROOT/ TTreeReader (zlib)
| ROOT/ RDataFrame (zlib)

RNTuple / TTree
© ROOT (zlib)

o

File format

Non-exhaustive list of R&D topics

Direct access to object stores, e.g. Intel DAOS
Integration of data decompression tasks into (experiment’s) MT frameworks

o Big speed-up on laptops: all cores decompress
e Optimal data pipeline from RNTuple to numpy

o Otherwise we risk wasting enormous resources on data transformation
Lossy data compression: automatic choice of floating point precision (lead by FNAL and BNL)
Automatically detect storage class for optimal access method (particularly difficult for remote 1/0)
Active exploitation of NV-RAM, e.g. for dynamically created index branches
Understanding of throughput results in the lab vs. throughput results in production clusters
Exploiting bulk I/O and vectorization with RDataFrame
Application-assisted caching in analysis facilities (e.g. certain hot branches)
Explore expressiveness of RDataFrame: which analysis building blocks can be described
(e.g. model building, data set management)

Background task: engineering work on RNTuple and RDF
E.g. visualization (RBrowser etc), RNTuple meta-data management, RDF connector to cluster
manager, format conversion utilities, testing I/O error cases and many more

Resources in 2020

e Vincenzo Padulano (PhD student)
o Started in February, supervised by Enric Tejedor
o Investigation on distributed data caching for analyses expressed in RDataFrame
m pyRDF and Spark as technology basis

e New fellow
o To be selected for Q2/2020, supervised by me
o Expected milestone: prototype integration of RNTuple with Intel DAOS
m Object store system for HPCs
m "“230PB planned for Argonne HPC from 2021

e R&D hardware: Fast I/O development machine
o To be purchased for Q2/2020
o Access to latest SSDs and NV-RAM devices
o Forthe time being, we use temporary hardware made available by openlab

RNTuple Integration with Object Stores: API

Modular storage layer that support files

ot iaton as data containers but also file-less

Reading and writing in event loops and through RDataFrame systems (object stores)
RNTupleDataSource, RNTupleView, RNTupleReader/Writer

Currently in touch with Intel DAOS
engineers on RNTuple integration

'Approximate translation between TTree and
Primitives layer / simple types RNTuple classes:
o R 1] el - : ; ’ .
Columns contammg elements of fundamental types (float, int, ...) TTree ~ RNTupleReader
grouped into (compressed) pages and clusters RNTupleWriter
RColumn, RColumnElement, RPage TTreeReader =~ RNTupleView
TBranch ~ RField
Storage layer / byte ranges TBasket ~ RPage
RPageStorage, RCluster, RNTupleDescriptor TTreeCache ~ RClusterPool
.

RNTuple Integration with Object Stores: Data Layout

. Dataset / File .
I 1
| " — —
Header Page C++ collections become offset columns Footer
; l struct Event {
Cluster int fId:
vector<Particle> fPtcls;
Approximate translation between TTree and RNTuple concepts: }:
Basket =~ Page struct Particle {
Leaf ~ Column float fE;
Cluster =~ Cluster vector<int> fIds;
};
Cluster: Page:

¢ Unit of memory mapping or (de)compression
¢ Typically tens of kilobytes
¢ Naturally representable by an object, e.g. in
the DAQOS object store (under investigation) 7
T

¢ Block of consecutive complete events
¢ Unit of thread parallelization (read & write)
¢ Typically tens of megabytes

Distributed data caching in an RDataFrame analysis

Cache input data that is being read during a distributed RDF analysis to the most
granular degree possible

Cache only what it’s actually read during the analysis:

e Cache only the processed branches
e Cache only the TTree clusters read by worker tasks

Goal: Speedup of a physics analysis, that is repeatedly run on the same data with
slightly different parameters each round.

How to cache TTree data?

Currently using PyRDF + Spark backend to create a set of tests for comparing

different tools/ways in which we could cache data:

1. TFilePrefetch: stores in a file the TBuffers that are read. ReghllElLY

XRootD: ProxyPlugin feature for orchestrating a cache.
RDataFrame: Snapshot in parallel to the analysis.

Something more...?

> W N

First Steps: TFilePrefetch

Toy example:

e Small Spark cluster (CERN
OpenStack VMs): 1 master and 3
workers.

e Simple analysis run with PyRDF

4

Input file from EQOS is cached on one
worker.

Issues:

e Only one worker caches if running
analysis on multiple workers

e Doesn’t cache data ranges outside
of the first cluster

4

Possible bug in TFilePrefetch under
investigation.

Github repo

10

https://github.com/vepadulano/rdfrangecache

