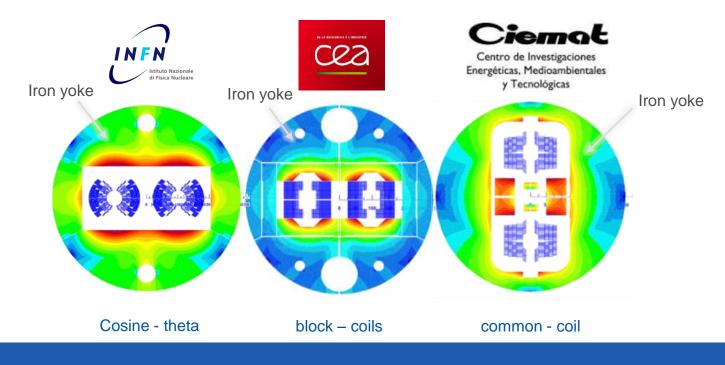


Characterization of Low-Carbon Steel for High-Field Accelerator Magnets.

Ignacio Aviles Santillana Giorgio Vallone 03.03.2020


With crucial contributions of: S. Izquierdo Bermudez, S. Sgobba and M. Crouvizier (CERN), K. P. Weiss and N. Bagrets (KIT), C.J. Huang and L. Lai – Feng (TIPC)

Outline

- Introduction and motivation
- Design approach
- Results obtained on ARMCO® at room temperature
- Rationale and motivation of the cryogenic testing
- Results obtained on ARMCO® at cryogenic temperature (4.2 K)
- Discussion and implementation of the results for MQXF (in collaboration with G. Vallone (BNL))
- Conclusions

- 16 T magnet development for FCC
- EuroCirCol designs rely on bladder & key mechanical assembly concepts, where the iron yoke has a key mechanical function.
- This study triggered the need of solid mechanical characterization of the material at room and cryogenic temperature.

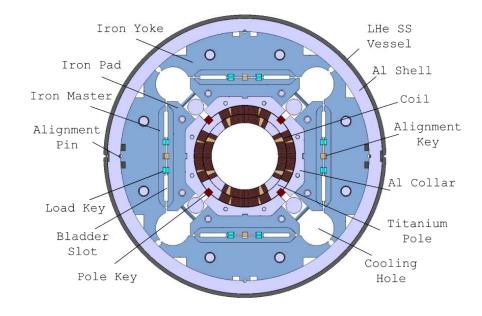
- For HL LHC, with respect to LHC: from MAGNETIL ® to ARMCO ® grade 4
 - Mainly motivated by unavailability of MAGNETIL®, an 'equivalent' product was found.
- An invitation to tender (IT 4009) for the supply of the yokes for the dipoles and quadrupoles of HL – LHC was launched in 2015. The quantity was 1800 tons of 5.8 mm thick sheets.

ARMCO® PURE IRON HIGH PURITY IRON

		Landaux.	1.		
Compositio	n	Max. Analysis %	Composition	n	Max. Analysis %
Carbon	(C)	0.010	Carbon	(C)	0.010
Manganese	(Mn)	0.100	Manganese	(Mn)	0.060
Phosphorus	(P)	0.010	Phosphorus	(P)	0.005
Sulfur	(S)	0.008	Sulfur	(S)	0.003
Nitrogen	(N)	0.006	Nitrogen	(N)	0.005
Copper	(Cu)	0.030	Copper	(Cu)	0.030
Cobalt	(Co)	0.005	Cobalt	(Co)	0.005
Tin	(Sn)	0.010	Tin	(Sn)	0.005

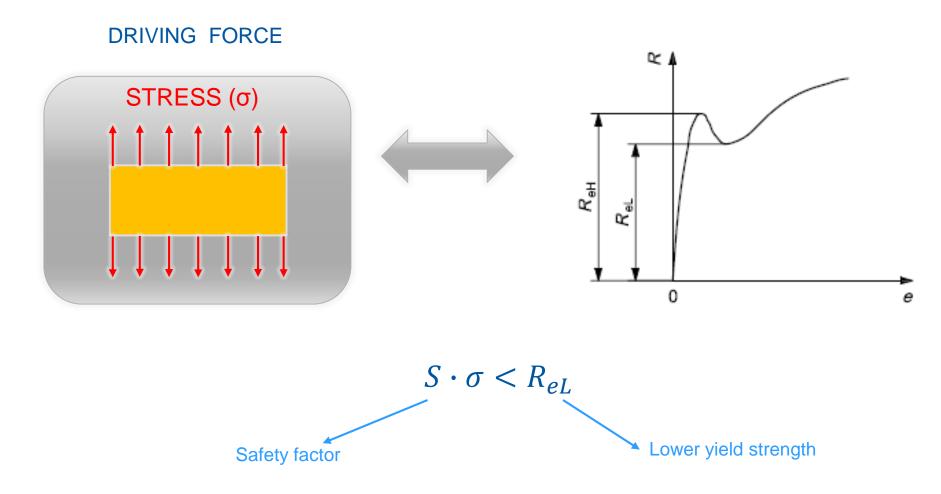
The high purity of ARMCO Pure Iron is the primary reason for the following special properties:

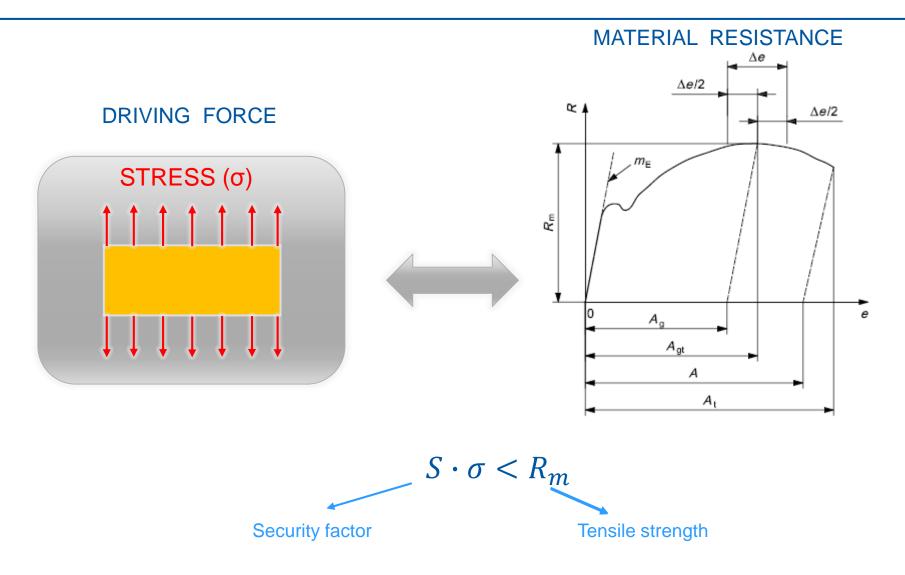
Excellent magnetic properties


Example of material certificate of IT - 4009

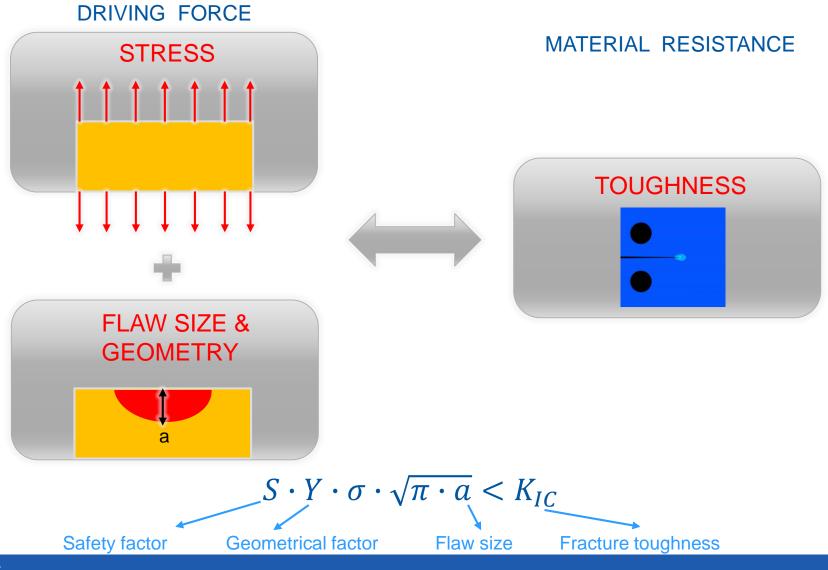
Werka-Nr. Worka-No. No. de l'usin		<i>08</i> 358558	Zeugnis Certifica No de o	-Nr. Ie-No. ertificat	A03 184306	3001		Sendungs-Nr. Shipment-No. No d'envoi		47199	253	Selb Pag Pag	e-Nr. e-No. 1	
A06 AK HOL	STE	EL INTER RKT 1 6 KÖLN		-			DOCUM DOCUM	EINIGUNG IENT ON M IENT DE C	ONTI	RIAL TES	MATÉRI			EN 10 EN 10 EN 10
	AO7.			pecification;			■ 0	26.10.2017 1203 52 75 1203 52 75 1203 52 75 1203 52 75	5220 5213		obblech@	@thyssen	krupp.cc	mn AØ m
SCHWE Kennzeichnu Marking:	FELI	EN10029 K MAX.0,03 (3 MATERIAL	STELLIC	S AUSW	EISEN)ZE				E 18	01975			des Lieferwe Supplier'sm Marque d'usi	the more and
	B01												ABSAHART HGRG PONCON DU RI	
		OF PRODU		D EDGE	s									V
:	LIST	OF MATER	IAL IDEN	TS										
	B07 BUND	LE	B07 PLATE-	NO.	B07 HEA	T-NO.		BI NUMBE PIECE		WEI	813 3HT			
001	<i>809</i> 5,8	x 750,0 :	× B								Kg			
	A251 A251 A251 A251 A251	0704 0904 1702 1704 1902 2001			707 707 707 707 707 707 707	901 901 901 901		1	15 17 22 11 19 22	2. 3. 1. 2.	060 340 030 510 717 L47			
							*	10	06	14.	304			
							••	10	06	14.	304			
		SPORT-NO. 25021												
	CHEN	ICAL COM	POSITION	OF TH	E LADLE	SAMPL	ES %		¢	c71-C99				
	<i>B07</i> HEAT 7079	-NO.	c ,001	SI ,003	MN ,050	P ,004	s ,003		4	B-G ,0003	CO ,002	CR ,017	CU ,006	MO ,001
	7079	01	N ,0035	NB ,001	NI ,016	SN ,002	TI ,000	,001		AS ,001	0 ,010			
	C70	HEAT PROC	ESS	OXYG	EN STEEL									

Werka-Nr. A08 Worka-No. No. de l'usine 4358558		1843063001		Sendungs-Nr Shipment-No No d'envoi		4719925	3	Seite-Nr. Page-No. Page-No.	2	
MECHANICAL CHA	RACTERISTICS	TENSIL	ETE	S T						
B07 C00 HEAT- SAMPLE NO. NO.	C01/ 02 B05 POS. STAT.	C10 TYPE AGED T	CO3 EST EMP °C	C11 R MPa	R Art	C12 Rm MPa	R/ L0 Rm % mm	C13 A	Z	Rm*A
707901 *A25109 707901 *A25113 707901 *A25119	701 0401 0021 901 0401 0021 701 0401 0021 901 0401 0021 901 0401 0021 901 0401 0021	0002 0006	+20 +20 +20 +20 +20 +20	207 232 208	RE H RE H RE H RE H RE H		77 75 73 75 81 75	54 55 47	81 1	5390 5675 3442
MECHANICAL CHA	BACTERISTICS	HARDNE	8 8 T	EST						
B07 C00 HEAT- SAMPL NO. NO.	B05 C				A	C32 VERAGE	AVERAG THICKNES			
707901 *A2510 707901 *A2510 707901 *A2511 707901 *A2511 707901 *A2512	901 0021 H 701 0021 H 901 0021 H	ARDNESSTEST ARDNESSTEST ARDNESSTEST ARDNESSTEST ARDNESSTEST	BRINEL BRINEL BRINEL	L L		82,0 82,0 83,0 83,0 83,0				
MECHANICAL CHA	DACTEDICTICS									
B07 C00 HEAT- SAMPI NO. NO.	LE 1) SAMP	LE-TYPE	птн	CLASS-	-2	WITH	CLASS-	-3		
707901 *A2510										
707901 *A2510		4.5		4.5			4.5			
707901 *A2511	2) 1701 1) 2)	4.5 5.0		4.5			4.5			
707901 *A2511		4.5		4.5			4.5			
707901 A2512	2001 1) 2)	6.0		6.0			6.0			
* SAMPLE PLATE	NOT INCLUDED	IN DELIVERY								
LEGENDS										
STAT. 0021 = ANNEAI	ED		04	P0 01 = TF	SIT ANS.					
0006 = NOT AC				T	PE TI	ENSILE TE	ST			
STATUSP	RODUCT									
UUI ANNEALED										
THE MANUFACTUR	WAGTER DES HERJ IER'S AUTHORIZE IT AUTORISÉ DU -Ing. Kern	D INSPECTION	REPRES U PRODU	ENTATIVI CTEUR	Ē					
thyssenkrupp Steel Europ Abnahme	e AG		Weither		te above ne accordance) ang-antepricht. Informed motorials with the terms of order. Is sand conformes	2)		G


 In order to combine the material and mechanical characterization with a functional magnet design, a detailed assessment and its application on a currently used magnet is proposed: MQXF


Design approaches: strength of material

MATERIAL RESISTANCE



Design approaches: strength of material

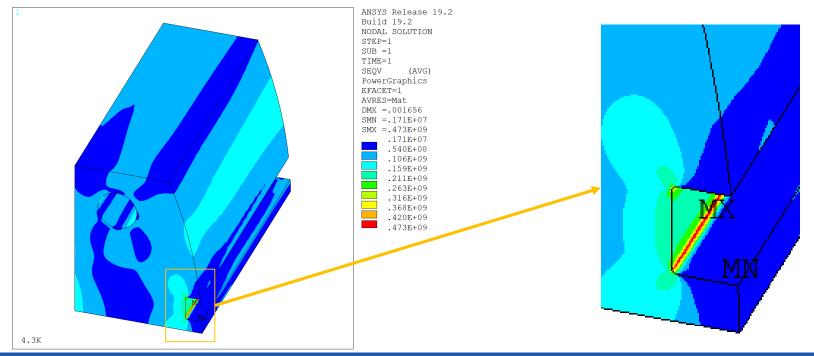
Design approaches: fracture mechanics

Test campaign

- 2 families of materials were tested:
 - ARMCO ® as received (after hot rolling). Rolling direction
 - ARMCO ® annealed (980°C during 1 hour).
 - The goal was to compare the properties with the as received state

The test campaign, carried out in 2016 – 2017, was performed as follows:

- Uniaxial tensile tests @ RT & 4.2 K \rightarrow CERN (M. Crouvizier)
- Fatigue testing @ 4.2 K \rightarrow TIPC (CN)
- Fracture toughness @ 4.2 K \rightarrow KIT (GE)



Material	Specimens	Test
	6 @ RT and 6 @ 4 K (3 per direction)	Tensile RT & 4 K
ARMCO®	3 rolling direction and 3 longitudinal direction	Fatigue at 4 K
annealed	2 specimens. LT orientation 2 specimens. TL orientation	Fracture toughness at 4 K
	3 @ RT and 3 @ 4 K	Tensile RT & 4 K
ARMCO®	3 specimens	Fatigue at 4 K
As – received	2 specimens. LT orientation	Fracture toughness at 4 K

Rationale and motivation of the cryogenic testing

- In order to asses the static, cyclic and toughness properties at temperature close to operation.
 - MQXF **nominally** requires a coil prestress of **120 MPa** on the pole to avoid unloading during powering, and of **140 MPa** to avoid unloading at **ultimate current**.
 - The stress distribution in the yoke after cooldown at 145 MPa (more severe) is the following:

Rationale and motivation of the cryogenic testing

- In order to rule out a premature failure during the whole lifespan of the components.
- Cycles tailored for MQXF case.
- Number of cycles: 20000 (EDMS 1171853). Safety factor: 20

6.2 MECHANICAL REQUIREMENTS

6.2.1 MECHANICAL FUNCTIONAL SPECIFICATIONS

6.2.1.1 CONTAINMENT OF LORENTZ FORCES

The insulation system has been chosen also to minimize interconnection deformation under the effect of the repulsive Lorentz forces between thebus bars. The design values are listed in Table VII [11].

	Value	
Design load linearly distributed on the bus bar and exercised by the Lorentz forces (12850A)	1.2 kN/m	
Distance between bus bar support points external to the interconnection (worst case MB->MQ interconnect with worst support positioning tolerances)	0.6 m	
Number of LHC cycles (continuous operation 20 years, 250 days operation/year, 4 ramps/day)	20.000	

Table VII. Reference values for mechanical dimensioning of the insulation system in term of Lorentz force restrain

Remark: the foreseen number of cycles is 12.000 [13]. The design value is increased to 20.000 as extra margin.

Design Description Document:

DDD 11 ITER_D_22HV5L v2.2

Magnet

The first fatigue assessment method uses SN curves established by component testing. The curves are preferably measured for the standard +/- (R=-1) cycle with zero mean stress (not R=0 often used at 4K), if not they have to be converted using empirical scaling rules linking fatigue life to yield/ultimate stress such as Goodman or Soderberg. After scaling from the SN +/- curve for mean stress effects, and correcting for multi-axial cyclic stress components, a safety factor is applied either to the cyclic stress, of a factor of 2, or to the number of cycles, of a factor of 20, using whichever gives the most conservative cyclic stress allowable.

Results: Tensile tests

At RT, we are mostly interested in the R_m ($R_m < 280$ MPa) as it has a major impact in the fabrication costs. Additionally, $R_{eL} > 150$ MPa is required to avoid plastic deformation in the yoke during loading at room temperature.

Material	R _{eL} [MPa]	R _m [MPa]	A [%]
ARMCO as received. Rolling direction	229 ± 1	293 ± 2	42 ± 1
ARMCO annealed. Rolling direction	237 ± 3	304 ± 2	41 ± 2
ARMCO annealed. Transverse direction	251 ± 1	301 ± 1	44 ± 2
Reference from material certificates	210 ± 12	286 ± 2	51 ± 3

Sample geometry according to ISO 6892. Thickness: 4 mm

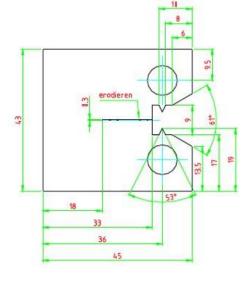
Results: Cryogenic tensile tests

Material	R _m [MPa]	A [%]
ARMCO as received (rolling direction)	1043 ± 4	0.4 ± 0.1
ARMCO annealed (Rolling direction)	972 ± 8	0.2 ± 0.1
ARMCO annealed (Transverse direction)	975 ± 6	0.3 ± 0.1

- Width in the calibrated section reduced from 12.5 mm to 8 mm to guarantee breakdown outside the heads.
- They all broke in the elastic region (brittle)
- R_m increases by a factor of ~ 3 @ 4.2 K

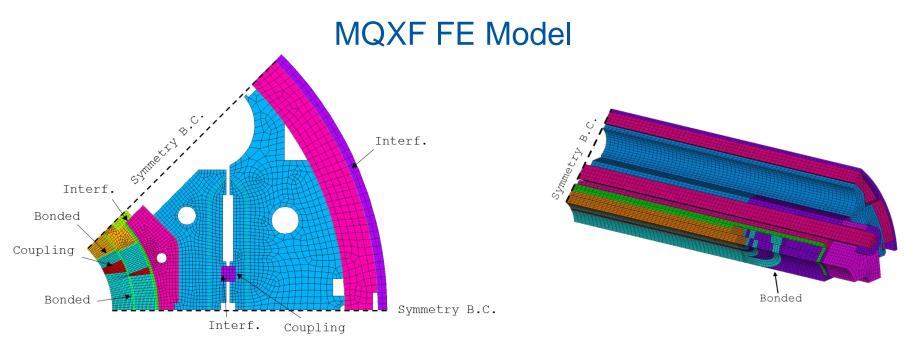
Results: Cryogenic fatigue testing

	Fatigue Parameters							
Specimen	Temp. [K]	σ _{max} [MPa]	R ratio	Frequency [Hz]	Survival Cycles			
ARMCO as received (rolling direction) x 3					>400,000			
ARMCO annealed (Rolling direction) x 3	4.2	500	0.1	7	>400,000			
ARMCO annealed (Transverse direction) x 3					>400,000			


Frequency below 8 Hz to avoid heating the sample during fatigue testing at 4.2 K

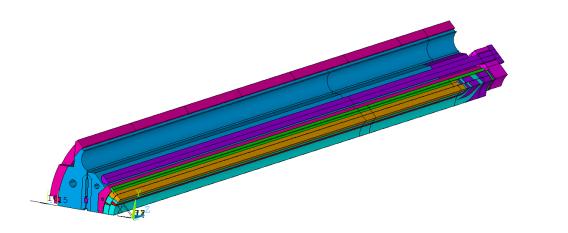
All the samples which were tested survived the designed load cycles for 400 kcycles

Fracture toughness results @ 4.2 K


- In order to implement a fracture toughness based design
 - Compact tensions specimens (5.8 mm thickness)
 - 'K' tests for low toughness materials (according to ASTM E399)

Specimen ID	Material	Fracture toughness (K _{IC}); [MPa√m]	Fracture toughness uncertainty; [MPa√m]
AR-LT-CT1	ARMCO as received	27.98	0.22
AR – LT- CT2	ARMCO as received	26.91	0.22
AN TL-CT1	ARMCO annealed (short side)	24.44	0.16
AN TL-CT2	ARMCO annealed (short side)	25.71	0.52
AN LT-CT1	ARMCO annealed (long side)	25.37	0.21
AN LT-CT1	ARMCO annealed (long side)	28.17	0.53

Application of the results: MQXF

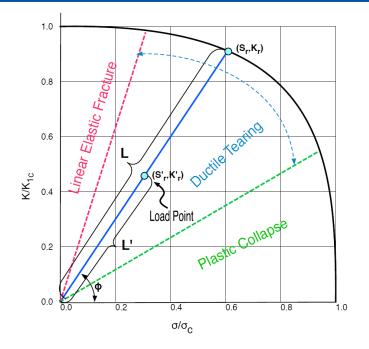

- Standard MQXF FE model
 - 2D and 3D
 - 1 octant, ¹/₂ length
 - Material properties \rightarrow linear elastic

۲

Application of the results: MQXF

Submodelling strategy

- Global model from MQXFS and MQXFA
- Stress state is very similar, MQXFS is obviously faster to run
- Detailed model of the end region
- Displacements after cooldown
- Similar stress during powering

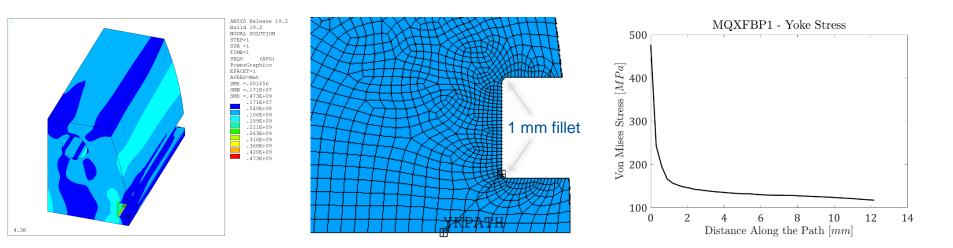


Introduction – Failure Assessment Diagram

Load Factor =
$$\sqrt{\frac{(S_r^2 + K_r^2)}{(S'_r^2 + K'_r^2)}}$$

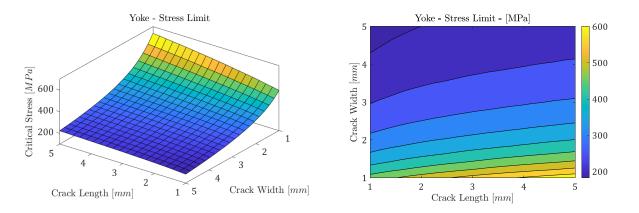
$$K_r(S_r) = S_r \left[\frac{8}{\pi^2} \log\left(\sec\left(\frac{\pi}{2}S_r\right)\right)\right]^{-1/2}$$

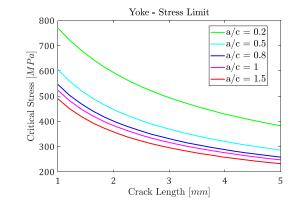
$$\sigma_{
m c}$$
 = 974 MPa
 $S_r = \sigma / (\sigma_c)$
 $K_{
m IC}$ = 26 MPa $\sqrt{
m m}$


• R6 Failure Assessment Diagram (FAD):

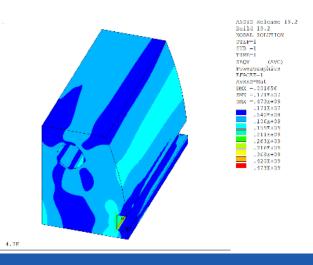
R6 PANEL. *R6: Assessment of the integrity of structures containing defects.* Revision 4, as amended. Gloucester: EDF Energy, 2001.

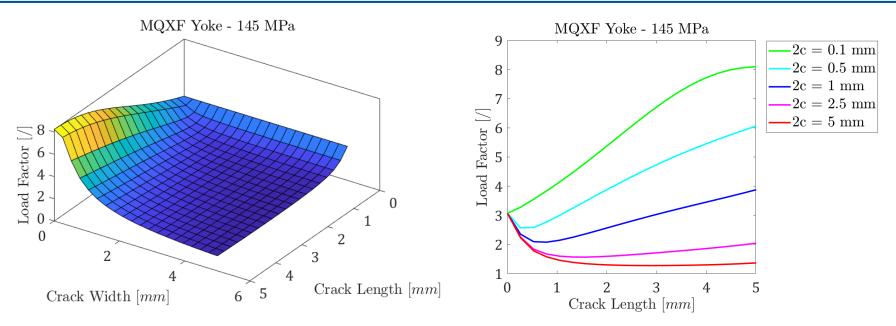
- Load points inside the curve are considered safe
- A load margin (load factor) can be computed projecting the loading point onto the curve


Discussion of the results: application to MQXF

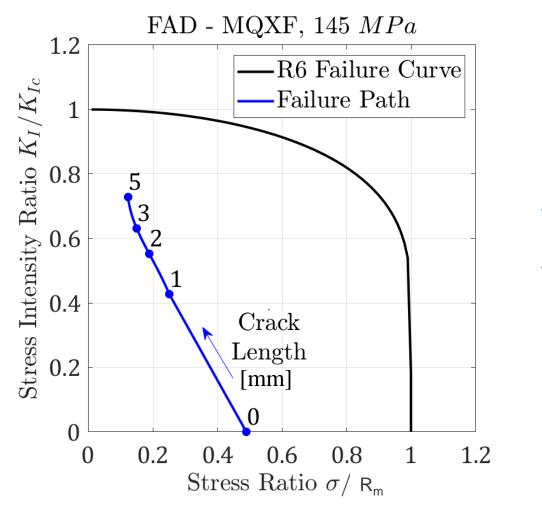


- 1st approach:
 - **Assuming a constant stress** (average peak stress) along the crack path
 - Very conservative
- Refined approach:
 - Path from the max stress along the min. gradient line
 - Stress is a function of the applied prestress
 - We refer here after to the stress applied on the pole with the standard assembly parameters


1st approach: stress limit & crack size results for MQXF. Constant stress


- For the stress profile of MQXF, K_I increases but the stress at the crack tip decreases when increasing crack length.
 - The crack preferentially propagates in width
 - UT detectability: With a UT inspection a flat bottom hole (FBH) of 1.2 mm would be easy to detect, the stress limit could go between 500 MPa and 750 MPa

Stress profile of MQXF


Refined approach: FAD results for MQXF. Path from the max stress along the min. gradient line.

- With a UT inspection a flat bottom hole (FBH) of 1.2 mm would be easy to detect:
 - A minimum load factor of 2
- Load factor increases with crack length: For the stress profile of MQXF, K₁ increases but the stress at the crack tip decreases.

Refined approach: FAD results for MQXF

- Position in the FAD with increasing crack length and a = c
- Very comfortably in the safe region

Discussion of the results

NDT

- Under the required conditions, it is technically possible to detect defects of 1.2 mm.
- It is typically done for high added value products (e.g. austenitic stainless steel > 10 CHF/Kg for this range of thickness).
- In addition, a surface inspection (visual, Eddy currents, penetrant testing) could be also put in place in order to detect surface cracks.
- Alternatively, a statistical NDT program could be performed for some 'as fine blanked' products at the surface and cross sections

Conclusions

- Yoke lamination with **well-defined yield strength at warm and cold** are required for a **reliable and cost-efficient design**.
- Tensile properties at room and cryogenic temperature (4.2 K) have been assessed for ARMCO ©:
 - $R_{el} = 244 \text{ MPa} @ RT$. Important value since should be enough to avoid plastic deformation during RT loading.
 - R_m = 974 MPa @ 4.2 K, more than 3 times the value at RT. Material breaks in the elastic region (brittle).
- All samples which were tested survived the designed fatigue load cycles (security factor of 20 in the number of cycles).
- Based on the calculation performed with fracture toughness @ 4.2 K of 26 MPa \sqrt{m} and a detection limit in principle set to 1.2 mm, a critical stress of 500 MPa is obtained. A refined calculation shows a rather high load factor for different crack sizes.

Conclusions

- The case study of **MQXF** shows that, when a **fracture mechanics' approach to design** is applied a **critical stress can go to rather high values** without jeopardizing the structural integrity of the magnets for small crack sizes.
- With a suitable NDT program, 100% of the volume can be controlled and imperfections of 1.2 mm can be detected, but would increase the production costs.
- **The two step methodology** shown in this presentation (FAD constant stress along the path + refined method) **can be implemented for any future magnet design**.
- It has been shown here a **successful synergy between core competences** of **EN/MME** (NDT, material characterization + mechanical testing at cryogenic temperature) **and TE/MSC** (a very specialised application of advanced FEM)

Thanks for your attention. Questions??