Exploring the neutrino emission of 3D core-collapse supernovae models

SNEWS Meeting @ Neutrino 2020

Laurie Walk June 19, 2020

Neutrinos from supernovae

Neutrinos as probes

- 1. Hydrodynamical instabilities
- 2. Progenitor rotation
- 3. Black-hole formation

Based on:

Walk, Tamborra, Janka, Summa. Phys. Rev. D. 98 (2018)

Walk, Tamborra, Janka, Summa. Phys. Rev. D. 100 (2019)

Walk, Tamborra, Janka, Summa, Kresse. Phys. Rev. D. 101 (2020)

Neutrinos as probes: Hydrodynamical instabilities

What hydrodynamical instabilities can form during the core-collapse?

How are the hydrodynamics reflected in the neutrino emission?

 \longrightarrow Based on 3D model of 27 M_{\odot} progenitor

For details please see: Tamborra, Raffelt, Hanke, Janka, Müller, Phys. Rev. D 90 (2014)

Neutrinos as probes - Hydrodynamics

What hydrodynamical instabilities can form during the core-collapse?

SASI — dipolar oscillating deformation of the shockwave along a plane Convection — higher order/frequency deformations of the shockwave

Neutrinos as probes - Hydrodynamics (SASI)

How are the hydrodynamics reflected in the neutrino emission?

 SASI presents as sinusoidal modulations of the neutrino luminosity

 $f_{\rm SASI} \propto R_{\rm s}^{-3/4}$

See also: Tamborra, Raffelt, Hanke, Janka, Müller, Phys. Rev. D 90 (2014)

Neutrinos as probes - Hydrodynamics (Convection)

How are the hydrodynamics reflected in the neutrino emission?

Convection presents as small-scale fluctuations of the neutrino luminosity

See also: Tamborra, Raffelt, Hanke, Janka, Müller, Phys. Rev. D 90 (2014)

Neutrinos as probes : Progenitor rotation

What are the effects of rotation on hydrodynamical instabilities?

Can we constrain rotational velocity through neutrinos?

Based on three self-consistent $15\,\mathrm{M}_\odot$ models:

- 1. Non-rotating model
- 2. Slow rotating (spin period of 6000 s)
- 3. Fast rotating model (spin period of 20 s)

For details please see: Summa, Janka, Melson, Marek, Astrophys. J. 852, 28 (2018)

Neutrinos as probes - Progenitor rotation

What are the effects of rotation on hydrodynamical instabilities?

- Sinusoidal SASI modulations present in non-rotating model
- Amplitude decreased in the slow rotating model
- Small-scale fluctuations present in fast rotating model

Neutrinos as probes - Progenitor rotation

Can we constrain rotational velocity through detectable neutrinos?

- Rotation weakens the SASI peak
- Less dominant SASI region, wider spread in high frequencies
- i.e. Small-scale fluctuations are resolved by spectrograms
- Suggests again an interplay between SASI and convection, brought on by rotation

Can we see black-hole forming stellar collapses through neutrinos?

Are there unique signatures in the neutrino emission?

 \longrightarrow Based on two 3D progenitor models of 40 and 75 ${\rm M}_{\odot}$

For details please see: Walk, Tamborra, Janka, Summa, Kresse. Phys. Rev. D. 101 (2020)

Can we see black-hole-forming stellar collapses through neutrinos?

- Neutrinos are amongst the only probes of BH-forming collapses
- High event statistics makes BH-forming collapses detectable up to great distances

Are there unique signatures in the neutrino emission?

- Two long, strong SASI episodes detectable for the $40M_{\odot}$ BH-forming progenitor

Are there unique signatures in the neutrino emission?

- Model shows two SASI episodes
- SASI frequency clearly traceable
- i.e. evolves (oscillates) with time
- Second SASI episode has a higher

frequency than the first

Are there unique signatures in the neutrino emission?

- SASI frequency and shock radius inversely proportional
- Tracks the contraction and expansion of the shock-front
- Clear, detectable imprints of the explosion physics through neutrinos!

Conclusions

- Neutrino signal reflects hydrodynamics of the core-collapse
- Rotation destroys large-scale global deformations of the shockwave
- Induces small-scale fluctuations instead
- Signatures of rotation may be visible in the detectable signal
- Neutrinos are key probes of BH formation
- Neutrino emission prior to BH formation reflects interesting physics
- Due to their large mass, BH-forming SNe have excellent detection prospects

Neutrinos are essential for exploring core-collapse supernovae!

Thank you!