
Triangulation with individual t₀'s

what information could individual experiments send to SNEWS to accomplish pointing?

Motivation: what can smaller experiments contribute...

C.J. Virtue

Gemma Frisius' 1533 diagram introducing the idea of triangulation into the science of surveying

Current and evolving situation

Middleonery

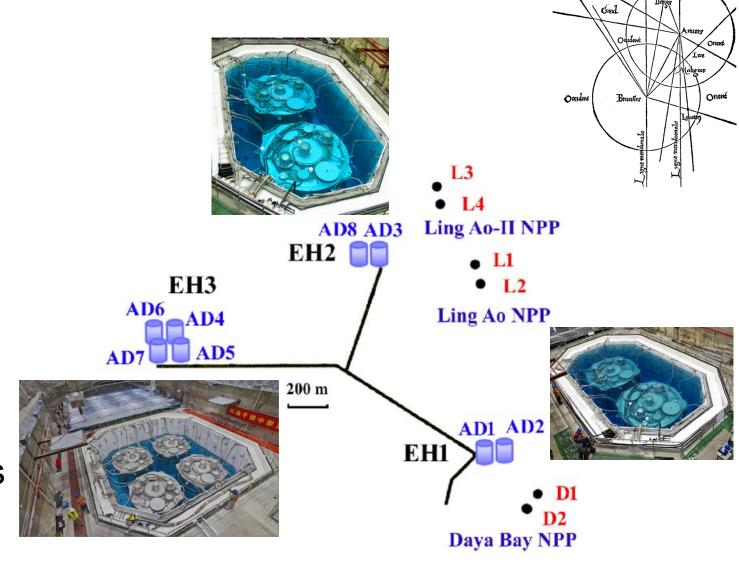
Count

Cou

- Have variety of detectors / technologies
 - Water / Ice Cherenkov
 - Liquid scintillator
 - LAr
 - Pb
 - CEvNS

- With different responses due to
 - Flavour sensitivity
 - Reaction thresholds
 - Detector thresholds
 - Background levels
 - Tagging purity and efficiency

- Plus individual detectors have different
 - Livetimes
 - Lifetimes
 - DAQ robustness against nearby SNe



Not "Daya Bay"-like with

- multiple
- identical
- distributed
- directly comparable

detectors.

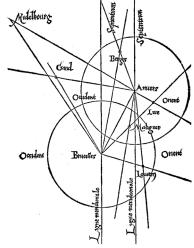
A strength and a weakness

Triangulation approaches – Pros & Cons

Below Brucelles Orient Live Or

(in the end I'm advocating for "all of the above")

- anisotropic reactions pointing (Kate & Cecilia)
 - IBD directional prompt-delayed spatial separation
 - ES direction after IBD tagging and removal
 - Pros
 - Difference in response matter much less if at all
 - No SN model dependence
 - Direction extraction handled by the detector experts
 - SNEWS could aggregate and combine multiple
 - Cons
 - WC & LS only
 - Sophisticated / analysis required
 - Longer latency / pointing power?


Triangulation approaches – Pros & Cons

Grand

Gr

- Full neutrino "lightcurve" comparison
 - Pros
 - Greatest potential to accomplish pointing
 - Doesn't rely on or could be confirmed by direction from asymmetric reactions
 - Cons
 - Requires high statistics → limited to the largest (mostly future) detectors
 - Sensitive to differences in response? (not Daya Bay) works best for similar/identical pairs of detectors
 - Second order SN model dependence for dissimilar detectors?
 - Cooler SN accentuates response differences leading to systematic errors?
 - Requires sharing of "full" data (difficult MOUs / less than full participation?)
 - Latency in data sharing? Event cleaning before transmission of data?
 - Interpretation out of the hands of the individual detector experts

What's a current small detector to do?

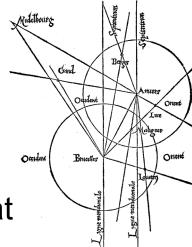
SNEWS 2.0 NSF grant application said...

- "Determine what really can be done in terms of triangulation with all of the acceptance-corrected light curves. The case of black hole formation causing a step function as the neutrinos get swallowed by the event horizon adds an additional timing marker in that scenario that we will attempt to exploit. We will perform a model-independent, un-binned auto-correlation of experimental data online to prepare for the online case.
- Enable the fully functional coincidence server SNEWS2.0 which will perform model independent un-binned auto-correlation of the acceptance-corrected experimental data in real time."

Acceptance-corrected / Model-independent / Real-time?

Gand Bricales Orient Live Valence Orient I see

- Real-time → near-time
- Acceptance-corrected would be detector / model-independent...
 - Anyone doing that? (or ignoring & relying on effects being second-order)
 - Non-trivial on moderate statistics data
 - Not possible (?) on sparse un-binned data
- Alternatively... Study what is possible in model-dependent approaches
 - \bullet Extract t_0 and uncertainties per SNEWS-adopted model and pass to SNEWS server in place of sparse un-binned data
 - Understand systematics and biases through study of a range of models
 - Map out SN distance dependence of uncertainties and at what range small detectors might contribute

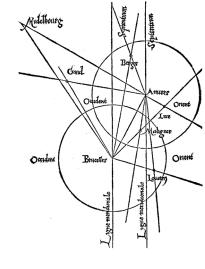

Study underway....

Occident Bricelles

Orient Live

- Currently for HALO-1kT, next for SNO+
 - Using Garching pinched-flux model in SNOwGLoBES
 - For a given distance, Poisson-fluctuate flux per timebin, run through GEANT MC
 - Repeat, build cumulative pdf
 - Repeat with shifted t₀ and do un-binned maximum likelihood fit against pdf to extract t₀ and uncertainty
 - Repeat as a function of distance
 - Repeat with other "standard" SN models as they are added to SNOwGLoBES or otherwise become available
 - Study biases, extracted uncertainties, model-dependence
- Machinery for this study is almost complete
- Remington Hill will be presenting some preliminary results in a future Pointing Working Group meeting

Direction...



- Assuming that the study shows that t₀'s for pointing become useful at some distance for these examples of more modest detectors
- And, assuming SNEWS provides a set of "standards" in SNOwGLoBES, spanning a range of models out to seconds, then
 - Machinery can be in place to fit real SN data in seconds to each of the set of models
- Returning to SNEWS server for triangulation
 - t₀ and σ_t₀ per model
 - Locally aggregated, "model-independent" t_0 and σ_t_0 ?
 - model independent t_{BH} and $\sigma _t_{BH}$ (different but related local analysis)
- And, for information
 - likelihood of fit to each of the standard set of models
 - model dependent d_{SN} estimates and uncertainties

Thanks for your attention....

Questions?

