POINTING WITH PRESUPERNOVA NEUTRINOS

Cecilia Lunardini Arizona State University

M. Mukhopadhyay, C. Lunardini, F. X. Timmes and K. Zuber, arXiv:2004.02045, accepted in ApJ.

Introduction

See Chinami Kato's talk at Neutrino2020

Presupernova \rightarrow collapse \rightarrow explosion

- Neutrinos from advanced stages of nuclear burning
 - Thermal (pair production)
 - Beta processes (capture, decay)
- 0.1-5 MeV energy
 - Need low threshold detector
- Detectable hours (days?)
 before collapse neutrinos
 - For near-earth stars (D<1 kpc)

Patton, Lunardini, Farmer & Timmes, 2017, ApJ, 851, 6

Why localization?

Rough pointing + list of nearby stars = potential for progenitor identification
 Li, Li, Wen, & Zhou, 2020, arXiv:2003.03982

- Motivation 1: early alert of collapse
 - observe a star before and during collapse to test stellar evolution
 - Prepare GW detectors
 - Prepare to observe exotic physics during collapse (e.g., point axion detectors)

- Motivation 2: very early alert of supernova explosion (or black hole formation)
 - precedes the neutrino burst by hours: useful for decision-making (esp. when human intervention is needed)
 - Can be the *only* useful alert for fast-exploding stars (less than 1 hour from collapse to explosion)

Signal at liquid scintillator detector

- JUNO-like detector (17 kt), inverse beta decay (IBD): $\bar{\nu}_e + p \rightarrow n + e^+$
 - E > 1.8 MeV threshold
 - Background: 2.6 events/hour in reactor-on phase

Nearby stars

- 31 supernova-ready stars at D<1 kpc
 - Known distance, mass and type

Directionality of IBD

• X⁽ⁱ⁾_{pn}: vector from e⁺ annihilation point to n capture point

Experimental sensitivity

- LS: Linear AlkylBenzene (SNO+, JUNO)
 - Directionality limited by neutron thermalizing before capture
 - Resolution of e⁺ annihilation also important
- LS-Li : LS with Lithium salts for faster n capture: $^6\text{Li} + n \rightarrow t \, (2.73 \text{ MeV}) + \alpha$
 - Enhanced directionality by shortening neutron capture range

Key quantities

- N_s: IBD signal events from point source
- N_{Bkg}: background events; assumed isotropic
- Signal-to-background ratio: $\ell = N_S/N_{Bkg}$
- Forward ($\theta < \pi/2$)-Backward ($\theta > \pi/2$) asymmetry:

$$\frac{a}{2} = \frac{(N_{F,S} + N_{F,Bkg}) - (N_{B,S} + N_{B,Bkg})}{(N_{F,S} + N_{F,Bkg}) + (N_{B,S} + N_{B,Bkg})}$$

$$N_{B,S} = \frac{N_S}{2} \stackrel{\downarrow}{1} - \frac{a_0}{2}^{\sharp} \qquad N_{F,S} = \frac{N_S}{2} \stackrel{\downarrow}{1} + \frac{a_0}{2}^{\sharp}$$

$$N_{B,Bkg} = \frac{N_{Bkg}}{2}$$
 $N_{F,Bkg} = \frac{N_{Bkg}}{2}$

Directional IBD signal

Isotropic background

Directionality: low-to-moderate

	Forward-Backward asymmetry		
4	LS	LS-Li	
1	0.1580	0.7820	
10.0	0.1418	0.7165	
3.0	0.1170	0.5911	

Tanaka & Watanabe, 2014, Scientific Reports, 4, 4708 For geoneutrinos (similar spectrum as pre-SN)

Localization - estimating signal direction

Apollonio, Baldini, Bemporad, et al. 2000, PhRvD, 61, 012001

Best estimate of arrival direction: average of unit vectors

$$\vec{p} = \frac{1}{N} \sum_{i=1}^{N} \hat{X}_{pn}^{(i)} \qquad (i = 1, 2, \dots, N)$$

2. Set direction of p-vector as new z-axis:

Localization – find uncertainty angle β

- Use linearized distribution for $\cos \theta$: $f(\cos x) = \frac{1}{2}^{\frac{1}{2}} 1 + a \cos x$
- Study statistical behavior of p-vector:
 - Mean:

$$\vec{p}_m = (0, 0, |\vec{p}|) = (0, 0, a/3)$$

• Standard deviation: take distribution of X_{pn} and apply Central Limit theorem to the components of p-vector

$$\sigma_x = \sigma_y = \sigma_z = \sigma = 1/\sqrt{3N}$$

(Note: minor dependence of σ_z on a is neglected here)

 Take 3D Gaussian distribution and find cone that contains a given probability:

$$P(p_x, p_y, p_z) = \frac{1}{(2\pi\sigma^2)^{\frac{3}{2}}} \exp\left(\frac{-p_x^2 - p_y^2 - (p_z - |\vec{p}|)^2}{2\sigma^2}\right)$$

$$\int_0^\infty p^2 dp \int_{\cos \beta}^1 d\cos \theta \int_0^{2\pi} d\phi \ P(p_x, p_y, p_z) = I \qquad (I = 0.68, 0.90, 0.99, \dots)$$

Solve for β , cone half-width

Results: localization angle vs statistics

 For Betelgeuse-like star (N ~ 200), 68% C.L.:

• LS : $\beta \sim 60$ degrees

• LS-Li : $\beta \sim 15$ degrees

Progenitor identification?

- Goal: reduce the list of candidates for astronomy follow-ups
 - A 4-5 candidates shortlist would be extremely useful to allocate telescope resources
- Idea: combine localization information with:
 - Distance cut (from number of events, model-dependent)
 - signals from multiple detectors (improve distance cut and/or triangulation)
 - Clues of stellar type from neutrino time profile (Silicon burning "bump")
 - Possible unusual stellar activity in days/months prior (dimming, etc.)

Examples: Betelgeuse, Sigma Canis Majoris

Betelgeuse, D=0.222 kpc, M=15 M_{sun}

						LS			LS-Li	
Time to CC	$N_{ m Total}$	$N_{ m Signal}$	$N_{ m Bkg}$	α	a	68% C.L.	90% C.L.	a	68% C.L.	90% C.L.
4.0 hr	93	78	15	5.20	0.1308	78.43°	116.17°	0.6610	23.24°	33.98°
1.0 hr	193	170	23	7.39	0.1374	63.92°	98.42°	0.6942	15.47°	22.26°
2 min	314	289	25	11.56	0.1435	52.72°	81.79°	0.7254	11.63°	16.67°

Sigma Canis Majoris, D=0.513 kpc, M=15 M_{sun}

						LS	I	LS-Li
Time to CC	$N_{ m Total}$	$N_{ m Signal}$	$N_{ m Bkg}$	α	a	68 % C.L.	a	68 % C.L.
2.0 hr	31	11	20	0.55	0.0553	103.28°	0.2797	71.43°
1.0 hr	36	13	23	0.56	0.0560	102.54°	0.2829	68.32°
$2 \min$	58	33	25	1.32	0.0887	93.56°	0.4484	41.57°

Betelgeuse

D=0.222 kpc, M=15 M_{sun}

Inner contours: LS-Li, 68%,90% CL Outer contours: LS, 68%,90% CL

Sigma Canis Majoris

D=0.513 kpc, M=15 M_{sun}

Inner contour: LS-Li, 68% CL Outer contour: LS, 68% CL

Discussion

Pointing at 10-kt scale LS detectors

- Sensitivity up to 1 kpc; angular error ~70°
 - Can provide shortlist of 4-10 candidates, about 1 hour prior to collapse
- Possible long term improvements:
 - ~30° with THEIA (100 kt)
 - ~10° with LS-Li

Questions

- When to issue localization information?
 - Publish as soon as possible and keep updating...
 - Best compromise between accumulating statistics and have enough time before collapse? Roughly, when you reach 100 events.

- Protocol to identify a slow-rising (hours/days) signal?
 - Use directionality for early identification?
- Extremely high potential for public engagement
 - Impact on the general public? How to handle?

BACKUP

New compilation of candidates

Table A1. Candidate Pre-supernova Stars.

Ν	Catalog Name	Common Name	Constellation	Distance (kpc)	${\rm Mass}~({\rm M}_{\odot})$	RA	Dec
1	HD 116658	Spica/α Virginis	Virgo	0.077 ± 0.004 a	$11.43^{+1.15}_{-1.15}$ b	13:25:11.58	-11:09:40.8
2	HD 149757	ζ Ophiuchi	Ophiuchus	0.112 ± 0.002 a	$_{20.0} g$	16:37:09.54	-10:34:01.53
3	$\rm HD\ 129056$	α Lupi	Lupus	0.143 ± 0.003 ^a	$10.1^{+1.0}_{-1.0} f$	14:41:55.76	-47:23:17.52
4	HD 78647	λ Velorum	Vela	0.167 ± 0.003 ^a	$7.0^{+1.5}_{-1.0}$ h	09:07:59.76	-43:25:57.3
5	HD 148478	Antares/ α Scorpii	Scorpius	0.169 ± 0.030 ^a	$11.0 - 14.3^{-l}$	16:29:24.46	-26:25:55.2
6	HD 206778	ϵ Pegasi	Pegasus	0.211 ± 0.006 a	$11.7^{+0.8}_{-0.8} f$	21:44:11.16	+09:52:30.0
7	HD 39801	Betelgeuse/ α Orionis	Orion	0.222 ± 0.040 d	$11.6^{+5.0}_{-3.9}$ m	05:55:10.31	+07:24:25.4
8	HD 89388	q Car/V337 Car	Carina	$0.230 \pm 0.020~^{\it c}$	$6.9^{+0.6}_{-0.6} f$	10:17:04.98	-61:19:56.3
9	HD 210745	ζ Cephei	Cepheus	$0.256 \pm 0.006~^{\it C}$	$10.1^{+0.1}_{-0.1} f$	22:10:51.28	+58:12:04.5
10	$\rm HD~34085$	$Rigel/\beta$ Orion	Orion	0.264 ± 0.024 a	$21.0^{+3.0}_{-3.0} j$	05:14:32.27	-08:12:05.90
11	${ m HD}\ 200905$	ξ Cygni	Cygnus	0.278 ± 0.029 ^C	8.0 ^r	21:04:55.86	+43:55:40.3
12	HD 47839	S Monocerotis A	Monoceros	0.282 ± 0.040 ^a	29.1^{-i}	06:40:58.66	+09:53:44.71
13	HD 47839	S Monocerotis B	Monoceros	0.282 ± 0.040 ^a	21.3^{-i}	06:40:58.57	+09:53:42.20
14	HD 93070	w Car/V520 Car	Carina	0.294 ± 0.023 ^C	$7.9^{+0.1}_{-0.1} f$	10:43:32.29	-60:33:59.8
15	$^{ m HD}$ 68553	NS Puppis	Puppis	0.321 ± 0.032 ^C	9.7 f	08:11:21.49	-39:37:06.8
16	HD 36389	CE Tauri/119 Tauri	Taurus	0.326 ± 0.070 ^C	$14.37^{+2.00}_{-2.77}$ k	05:32:12.75	+18:35:39.2
17	HD 68273	γ^2 Velorum	Vela	0.342 ± 0.035 ^a	$9.0^{+0.6}_{-0.6}$	08:09:31.95	-47:20:11.71
18	$\rm HD\ 50877$	o^1 Canis Majoris	Canis Major	0.394 ± 0.052 ^C	$7.83^{+2.0}_{-2.0} f$	06:54:07.95	-24:11:03.2
19	HD 207089	12 Pegasi	Pegasus	0.415 ± 0.031 ^c	$6.3^{+0.7}_{-0.7} f$	21:46:04.36	+22:56:56.0
20	HD 213310	5 Lacertae	Lacerta	0.505 ± 0.046 a	$5.11^{+0.18}_{-0.18}$ q	22:29:31.82	+47:42:24.8
21	HD 52877	σ Canis Majoris	Canis Major	0.513 ± 0.108 ^C	$12.3^{+0.1}_{-0.1} f$	07:01:43.15	-27:56:05.4
22	HD 208816	VV Cephei	Cepheus	0.599 ± 0.083 ^c	$10.6^{+1.0}_{-1.0} f$	21:56:39.14	+63:37:32.0
23	HD 196725	θ Delphini	Delphinus	0.629 ± 0.029 ^c	$5.60^{+3.0}_{-3.0}$ n	20:38:43.99	+13:18:54.4
24	HD 203338	V381 Cephei	Cepheus	0.631 ± 0.086 ^c	12.0 8	21:19:15.69	+58:37:24.6
25	HD 216946	V424 Lacertae	Lacerta	0.634 ± 0.075 ^c	$6.8^{+1.0}_{-1.0}$ p	22:56:26.00	+49:44:00.8
26	HD 17958	HR 861	Cassiopeia	0.639 ± 0.039 ^c	$9.2^{+0.5}_{-0.5} f$	02:56:24.65	+64:19:56.8
27	HD 80108	HR 3692	Vela	0.650 ± 0.061 ^c	$12.1^{+0.2}_{-0.2} f$	09:16:23.03	-44:15:56.6
28	$\mathrm{HD}\ 56577$	145 Canis Major	Canis Major	0.697 ± 0.078 ^c	$7.8^{+0.5}_{-0.5} f$	07:16:36.83	-23:18:56.1
29	$\rm HD\ 219978$	V809 Cassiopeia	Cassiopeia	0.730 ± 0.074 ^c	$8.3^{+0.5}_{-0.5}$ f	23:19:23.77	+62:44:23.2
30	${ m HD}\ 205349$	HR 8248	Cygnus	0.746 ± 0.039 ^C	$6.3^{+0.7}_{-0.7} f$	21:33:17.88	+45:51:14.5
31	HD 102098	$Deneb/\alpha$ Cygni	Cygnus	0.802 ± 0.066 ^e	$19.0^{+4.0}_{-4.0}$ e	20:41:25.9	+45:16:49.0

31 HD 102098 Deneb/α Cygni Cygnus 0.802 ± 0.066 e $19.0^{+4.0}_{-4.0}$ o 20:41:25.9 +45:16:49.0 Note— ^avan Leeuwen (2007), ^bTkachenko et al. (2016), ^cGaia Collaboration et al. (2018), ^dHarper et al. (2017), ^eSchiller & Przybilla (2008), ^fTetzlaff et al. (2011), ^gHowarth & Smith (2001), ^hCarpenter et al. (1999), ^fCvetkovic et al. (2009), ^gShultz et al. (2014), ^kMontargès et al. (2018), ^fOhnaka et al. (2013), ^mNeilson et al. (2011), ⁿvan Belle et al. (2009); Malagnini et al. (2000), ^eNorth et al. (2007), ^eLee et al. (2014), ^gBaines et al. (2018), ^eReimers & Schroeder (1989), ^eTokovinin (1997)

- Includes red and blue supergiants;
- updated distance/mass info

Antares

D=0.169 kpc, M=15 M_{sun}

Inner contours: LS-Li, 68%,90% CL Outer contours: LS, 68%,90% CL

References

Pre-SN numerical model: Patton, Lunardini, Farmer & Timmes, 2017, ApJ, 851, 6
Zenodo, doi 10.5281/zenodo.2626645 (tables)

Exploratory study of pointing: Li, Li, Wen, & Zhou, 2020, arXiv:2003.03982

Enhancing pointing with LS + Lithium: Tanaka & Watanabe, 2014, Scientific Reports, 4, 4708

Pointing method: Apollonio, Baldini, Bemporad, et al. 2000, PhRvD, 61, 012001

JUNO-specific information: An, An, et al. 2016, Journal of Physics G Nuclear Physics, 43, 030401

Table A2. Minimum Angular Separation Between Pre-supernova Candidates.

N	Catalog/Common	Min. Ang.	Nearest Neighbor	Nearest Neighbo
	Name	Separation (degree)	Name	Number
1	HD 116658/Spica	39.66	HD $129056/\alpha$ Lupi	3
2	HD 149757/ ζ Ophiuchi	15.97	HD 148478/Antares	5
3	HD $129056/\alpha$ Lupi	29.73	$\mathrm{HD}\ 148478/\mathrm{Antares}$	5
4	HD $78647/\lambda$ Velorum	1.73	${ m HD~80108/HR~3692}$	27
5	HD 148478/Antares	15.97	HD 149757/ ζ Ophiuchi	2
6	HD 206778/ ϵ Pegasi	13.08	$\mathrm{HD}\ 207089/12\ \mathrm{Pegasi}$	19
7	HD 39801/Betelgeuse	11.59	S Mono A/B	12/13
8	$\mathrm{HD}~89338/\mathrm{q}~\mathrm{Car}$	3.30	$\mathrm{HD}\ 93070/\mathrm{w}\ \mathrm{Car}$	14
9	HD $210745/\zeta$ Cephei	5.69	$\mathrm{HD}\ 208816/\mathrm{VV}\ \mathrm{Cephei}$	22
10	$\mathrm{HD}~34085/\mathrm{Rigel}$	18.60	HD 39801/Betelgeuse	7
11	HD $200905/\zeta$ Cygni	4.39	HD 102098/Deneb	31
12	$\mathrm{HD}~47839/\mathrm{S}~\mathrm{Mono}~\mathrm{A}$	11.60	HD 39801/Betelgeuse	7
13	$\mathrm{HD}~47839/\mathrm{S}~\mathrm{Mono}~\mathrm{B}$	11.60	HD 39801/Betelgeuse	7
14	$\mathrm{HD}\ 93070/\mathrm{w}\ \mathrm{Car}$	3.30	$\mathrm{HD}~89338/\mathrm{q}~\mathrm{Car}$	8
15	HD 68553/NS Puppis	7.72	HD $68273/\gamma^2$ Velorum	17
16	HD 36389/119 Tauri	12.50	HD 39801/Betelgeuse	7
17	HD $68273/\gamma^2$ Velorum	7.72	HD 68553/NS Puppis	15
18	$\mathrm{HD}\ 50877/o^{1}\ \mathrm{Canis}\ \mathrm{Majoris}$	4.12	HD $52877/\sigma$ Canis Majoris	21
19	$\mathrm{HD}\ 207089/12\ \mathrm{Pegasi}$	13.08	HD 206778/ ϵ Pegasi	6
20	HD 213310/5 Lacertae	4.88	HD $216946/V424$ Lacertae	25
21	HD $52877/\sigma$ Canis Majoris	4.12	$\mathrm{HD}\ 50877/o^{1}\ \mathrm{Canis}\ \mathrm{Majoris}$	18
22	$\mathrm{HD}\ 208816/\mathrm{VV}\ \mathrm{Cephei}$	5.69	HD $210745/\zeta$ Cephei	9
23	HD 196725/ θ Delphini	16.39	HD 206778/ ϵ Pegasi	6
24	HD 203338/V381 Cephei	6.72	HD 208816/VV Cephei	22
25	$\mathrm{HD}\ 216946/\mathrm{V}424\ \mathrm{Lacertae}$	4.88	HD 213310/5 Lacertae	20
26	${ m HD~17958/HR~861}$	23.49	$\rm HD~219978/V809~Cassiopeia$	29
27	${\rm HD~80108/HR~3692}$	1.73	HD $78647/\lambda$ Velorum	4
28	HD 56577/145 Canis Majoris	5.22	HD $50877/o^1$ Canis Majoris	18
29	HD 219978/V809 Cassiopeia	9.33	$\mathrm{HD}\ 208816/\mathrm{VV}\ \mathrm{Cephei}$	22
30	HD 205349/HR 8248	5.38	HD 200905/ ζ Cygni	11
31	HD 102098/Deneb	4.39	HD $200905/\zeta$ Cygni	11

t = -4.0 hours

t = -1.0 hour

t = -2 minutes

30° -45° -30° -45° -30° -45° -60° -75° RA

t = -4.0 hours

t = -1.0 hour

t = -2 minutes

Antares, D=0.169 kpc, M=15 M_{sun}

45° 30° 15° 240 240 180 150 120/90. 60 30 0 330 300 -45° -45° -60° -75° RA

t = -2.0 hours

t = -1.0 hour

t = -2 minutes

Sigma Canis Majoris, D=0.513 kpc, M=15 M_{sun}