# Using SCiMMA architecture for SNEWS server

Amanda Depoian & Skylar Xu

adepoian@purdue.edu yx48@rice.edu

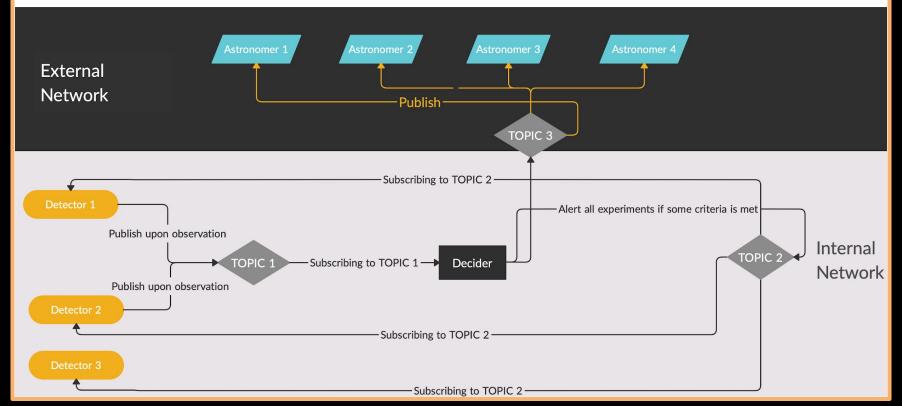
SNEWS Collaboration Meeting - June 19, 2020

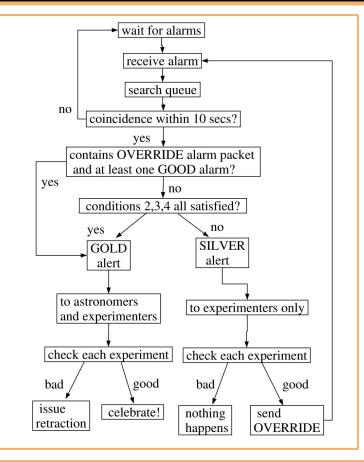
#### **SCIMMA**

# Scalable Cyberinfrastructure to support Multi-Messenger Astrophysics

- NSF project developing tools for inter-observatory communication and a network for alerts.
- Their long term support plan is an intended 5 year institute starting after this 2 year period.
- SCiMMA is very keen on collaborating and supporting SNEWS collaboration.

### Hopskotch


- Hopskotch is a publish-subscribe messaging system implemented based on Apache Kafka (stream-processing software platform).
- SCiMMA deploy their server on AWS (Amazon Web Services); The client is currently the Python package "hop-client".
- Clients can publish/subscribe messages using command lines such as:
  - hop publish kafka://SERVER/TOPIC -F config.conf example.gcn3
  - hop subscribe kafka://SERVER/TOPIC -F config.conf -e


## **Implementation**

SNEWS can potentially use the hop tool as a backend for communication and alerts. This may make sending alerts to telescopes easier (not considered at moment). The current implementation consists of three parts:

- **deque**: a data structure based on python "collections.deque" that stores most recent messages and removes old messages.
- **decider**: an object that has **deque** as a field. Behaviors include adding messages and deciding if current messages indicate a supernova.
- model: interact with hopskotch and instantiate a **decider** object. Pass messages in hop.stream to the decider. Publish to TOPIC 2 if the decider decides "True".







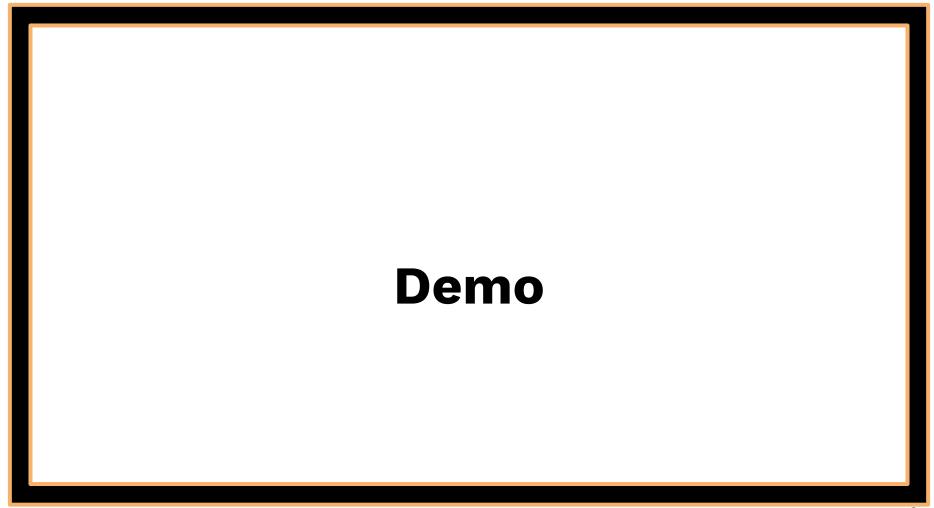
#### **SNEWS 1.0 Alert Flowchart**

**Alarm**: Supernova neutrino candidate is detected by a single experiment.

→ publish to Topic 1, sent to Decider

**Alert**: Decider checks if two or more experiments pass all the coincidence requirements.

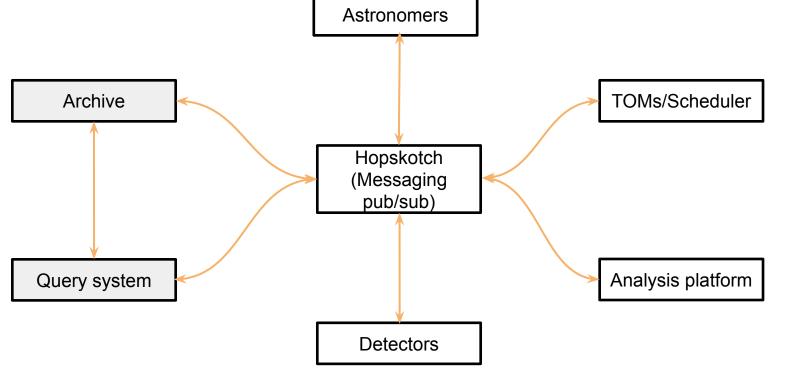
If coincidence is not met:


→ publish to Topic 2, sent back to experiments (further checking done)

If coincidence is met:

→ publish to Topic 3, sent back to experiments (further checking done) and to astronomers

### **Goals & Next Steps**


- 1. Develop prototype network with 3 experiments and one decider to test coincidence requirements.
- 2. Implement SNEWS 1.0 coincidence requirements to reflect what real alerts would look like.
- Test robustness.
- End of summer: Make a decision to use SCiMMA & Hopskotch for SNEWS 2.0 or not



#### **Useful Links**

- Hop-client: <a href="https://github.com/scimma/hop-client">https://github.com/scimma/hop-client</a>
- Hop-client demo: <u>https://github.com/scimma/may2020-techthon-demo/blob/master/Hopskot-chTutorial.md</u>
- Docker containers: <a href="https://github.com/scimma/scimma-server-container">https://github.com/scimma/scimma-server-container</a>
- Apache Kafka: <a href="https://kafka.apache.org/documentation/">https://kafka.apache.org/documentation/</a>
- Workshop recordings: <u>https://www.youtube.com/channel/UC8oQojENio8vOWT52Uy0YKA</u>
- SCIMMA: <a href="https://scimma.org/">https://arxiv.org/pdf/1903.04590.pdf</a>
- SNEWS 1.0: <a href="https://iopscience.iop.org/article/10.1088/1367-2630/6/1/114">https://iopscience.iop.org/article/10.1088/1367-2630/6/1/114</a>

# SCiMMA Hopskotch messaging and data flow Astronomers

