

LHC days in Split, October 5th , 2010

Top physics with ATLAS

Antoine Marzin (University of Oklahoma) on behalf of the ATLAS collaboration

1. Introduction

- 2. Ingredients for top quark physics
- 3. First ttbar candidate events
- 4. Background estimation
- 5. Plans for first top measurements
- 6. Summary

irfu

- œ
- s a c l a y

Top production at the LHC

Top pair production :

• Tevatron : ≈ 85% quark-antiquark annihilation

The LHC is a top factory

 $\rightarrow \sigma_{tt}$ LHC (7 TeV) $\approx 20~\sigma_{tt}$ Tevatron

We expect 1 fb⁻¹ by the end of 2011

 \rightarrow we might have double the statistics available at the Tevatron

Top physics at the LHC

• With early data :

- Top rediscovery (few pb⁻¹)
- \rightarrow First cross-section measurement
 - Detector calibration
- \rightarrow Jet energy scale, b-tagging efficiency

• Next :

- Precision tests of SM
- \rightarrow precise m_t measurement to constrain $M_{\rm H}$
- \rightarrow single top measurements
 - Top is a good probe to search for new phenomena

2 categories of searches :

- 1. Look at what top decays/couples to :
 - \rightarrow charged Higgs decays in MSSM or NMSSM
 - $\rightarrow\,$ decays to Zc, Zu (FCNC)
- 2. Look at particles decaying to t-tbar or t-bbar :
 - → Many models predict heavy objects that decay into ttbar : ex: Z', KK excitations, MSSM Higgs, topcolor
 - $\rightarrow W' \rightarrow t$ bbar search
 - $\rightarrow 4^{th}$ generation t'

Antoine Marzin (OU)

 \rightarrow stop seach

ttbar decay modes:

- all jets : 46%
- lepton plus jets : 44%
- dilepton : 10%

SM top pair production is often the main background for new physics searches

Leptons

Electrons:

- Main sources of fakes :
 - γ conversion and fakes from hadron

Identification :

- Acceptance, E_T , and fiducial cuts
- Lateral width of the shower
- Fraction of energy in the strip layer (to reject π^0) :
- Track quality : hits in pixel, pixel+SCT, d_0
- Cluster-track matching ($\Delta \eta < 0.01$)
- Hits in the B-layer n_{BL} (against γ conversion)

Muons :

- Main sources of fakes :
 - π,K decays and punch-through
- Reconstruction :
 - Statistical combination of ID & MS tracks
- Relative momentum scale and resolution :

• Good resolution observed with $Z \rightarrow \mu \mu$ events

80

90

100

50

110 120 m_{μμ} [GeV]

Jets

Reconstruction :

- Anti-k_t algorithm, R = 0.4
- Topoclusters as input

Calibration schemes :

Jets are calibrated at the truth-particle level to correct jet energy for calorimeter non-compensation, dead material, shower leakage, pile-up

• EM + JES (default for top analyses) :

simple p_T and η dependent calibration (based on MC or from data using γ +jets and di-jets balance techniques)

• Global sequential (GS) :

start from EM+JES and add jet-by-jet information about the shower shape properties of the jet to improve the resolution

• Global cell energy-density weighting (GCW) : cell weights based on cell energy densities to compensate for different

calorimeter response to HAD/EM energy deposition (MC)

Local cluster weighting (LCW) : uses properties of topoclusters to calibrate them individually (weights based on pions MC)

Performance with data :

Calibrated jets energies in data/MC agree at the level of 2%

Missing transverse energy

Reconstruction :

Include contributions from cells in topoclusters, muons and corrections for energy loss in the cryostat

Global calibration (independent of the object) :

- Global cell weighting calibration (GCW) : cell-level signal weight
- Local cluster weighting calibration (LCW) : cells weights according to the topocluster topology

Refined calibration

Refinement of the cells calibration from physics objects

Resolution :

→ Good agreement between MC and data for min bias events

LHC-10

Jet energy scale and resolution

Jet energy scale uncertainty :

JES uncertainty estimated by comparing MC simulations using various detector configuration, hadronic shower and physics models

Main sources of systematic uncertainties :

- Dead material : 5%
- Noise description : 3%
- Hadronic shower model : 5%
- Lar/Tile absolute EM scale : 3%

JES uncertainty , anti k _T , R = 0.4			
	Barrel	End-caps	
p _T < 60 GeV	8%	9%	
p _T > 60 GeV	6%	7%	

Jet energy resolution :

Jet energy resolution measured in-situ using di-jet balance and bi-sector techniques.

Measure
$$A = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}} \longrightarrow \frac{\sigma_{p_T}}{p_T} = \sqrt{2}\sigma_A$$

MC and data agree within 14% for $20 < p_{\tau} < 80$ GeV

3 main identification algorithm categories :

- 1. Impact parameter based taggers : Trackcounting, JetProb
- \rightarrow look for displaced tracks wrt PV
- 2. Secondary vertex tagger : SVO (default for early top analyses)
- \rightarrow explicit reconstruction of the b-hadron decay vertex
- \rightarrow use 3D decay length significance L/ σ (L) as discriminant variable
- 3. Soft muon tagger :
- \rightarrow exploits semi-leptonic decay of b and c-hadrons to muons (BR=20%)
- \rightarrow use p_T (µ) as discriminant variable

Number of jets SV0 selection Simulation **180**⊢ • Data 2010 b jets 160 c jets Ns = 7 TeV140⊢ light jets $L = 0.4 \text{ nb}^{-1}$ 120 100 ATLAS 80 - Preliminary 60 40 20 0⊑ -20 20 30 -10 0 10 $L/\sigma(L)$

Track

Top candidates : ℓ(e,µ)+jets channel

•Event selection :

- Primary vertex with \geq 5 tracks
- Exactly 1 isolated lepton (e,μ)
 - p_T > 20 GeV
 - trigger matching
- ≥ 4 jets (anti-kt R=0.4 at EM+JES scale)
 - p_T > 20 GeV
 - e/jet overlap removal
- ≥ 1 b-tagged (SV0 at 50% efficiency)
- $E_T^{miss} > 20 \text{ GeV}$

7 candidates in 295 nb⁻¹

Top candidates : dilepton channel

• Event selection :

- primary vertex with \geq 5 tracks
- Exactly 2 isolated leptons (e,μ)
 - p_T > 20 GeV
 - opposite charges
 - ≥ 1 with trigger matching
- ≥ 2 jets with $p_T > 20$ GeV
- Specific selection for each channel :
- ee: E_T^{miss} > 40 GeV, $|M_{ee} M_z|$ > 5 GeV
- $\mu\mu$: E_T^{miss} > 30 GeV, $|M_{\mu\mu} M_z|$ > 10 GeV
- $e\mu$: $H_T = \sum E_T$ (leptons+jets) > 150 GeV

2 candidates in 295 nb⁻¹

Top eµ platinium candidate with 2 b-tagged jets

Data-driven background determination

Main backgrounds in the &+jet channel :

- W+jet events
- QCD multi-jets events with a fake lepton
- W+jets : from MC → data-driven methods underway (W/Z ratio, W asymetry)

QCD : matrix-method (+ other methods to cross-check) :

- → define 2 event samples :
 - Tight : standard event selection
 - **Loose** : $e(\mu)$ wihout B-layer (isolation) cut

$N^{loose} = N^{loose}_{real} + N^{loose}_{fake}$	Nb of fake leptons in selected data events
$N^{tight} = \varepsilon_{real} N^{loose}_{real} + \varepsilon_{fo}$	$_{_{ke}}N_{_{fake}}^{loose}$

 $\rightarrow \epsilon_{real}$ estimated from MC Z $\rightarrow \ell\ell$ (but it will be estimated from data with more statistics)

 $\rightarrow \epsilon_{fake}$ estimated from a data control sample enriched in QCD multi-jets events :

• \geq 1 jet with $p_T > 20 \text{ GeV}$ • $E_T^{miss} < 10 \text{ GeV}$

Iterative procedure required due to a small residual contamination of the control sample from W and Z events (typically converges after 2 iterations)

This procedure is applied in bins for estimates versus N_{jets} or kinematic variables

Antoine Marzin (OU)

LHC-10

Event distributions

- Modified I+jets selection : 1 ℓ , \geq 1 jet with $p_T > 20$ GeV and $E_T^{miss} > 20$ GeV (no b-tagging requirement)
- QCD from matrix method (with stat. unc.)
- Other processes from MC (no stat. unc.)

Antoine Marzin (OU)

LHC-10

Impact of b-tagging

Antoine Marzin (OU)

LHC-10

All these MC analyses are done at 10 TeV (σ_{tt} @10 TeV \approx 2.5 x σ_{tt} @ 7 TeV)

Top anti-top cross-section : (200 pb⁻¹ at 10 TeV)

Plus luminosity uncertainty (we have already achieved 11% with data)

All these MC analyses are done at 10 TeV (σ_{tt} @10 TeV \approx 2.5 x σ_{tt} @ 7 TeV)

- Top anti-top cross-section : (200 pb⁻¹ at 10 TeV)
 - Lepton + jets channel
 - Dilepton channel :

Simple Cut and Count method + profile likelihood ratio

$$\frac{\Delta\sigma}{\sigma} = \pm 3(stat) \pm 10(syst)\%$$

$$\implies \text{signal model, fake rate, ISR/FSR}$$

Plus luminosity uncertainty (we have already achieved 11% with data)

Entries / 10 GeV

All these MC analyses are done at 10 TeV (σ_{tt} @10 TeV \approx 2.5 x σ_{tt} @ 7 TeV)

- Top anti-top cross-section :
 - Lepton + jets channel
 - Dilepton channel
- **Top quark mass :** template method in the lepton + jets channel
 - **1-D analysis :** *m_t measurement only*
 - **2-D analysis :** simultaneous measurement of m_t and JES
 - → Need a better understanding of the detector

	Expected uncertainties					
Method	stat syst total					
1-D (100 pb ⁻¹)	2 GeV	4 GeV	4.5 GeV			
2-D (1 fb ⁻¹)	0.6 GeV	2 GeV	2.1 GeV			

 \longrightarrow JES, ISR/FSR

AT LAS

All these MC analyses are done at 10 TeV (σ_{tt} @10 TeV \approx 2.5 x σ_{tt} @ 7 TeV)

- Top anti-top cross-section :
 - Lepton + jets channel
 - Dilepton channel
- Top quark mass
- Single top (t-channel): (200 pb⁻¹ at 10 TeV)
 - Sequential cuts analysis :
- \rightarrow Add kinematical cuts to reject tt and W+jets
 - Likelihood function analysis :
- \rightarrow Likelihood ratio with angular variables to discriminate tt and W+jets

Method	Δσ/σ	
Seq. cuts	$\pm 15(stat) \pm 35(syst) \pm 11(lumi)\%$	
likelihood	$\pm 14(stat) \pm 32(syst) \pm 11(lumi)\%$	

→ b-tagging, bkg normalisation, ISR/FSR, Generator

Significance with 200 pb⁻¹ at 10 TeV : 2.7 σ

All these MC analyses are done at 10 TeV (σ_{tt} @10 TeV \approx 2.5 x σ_{tt} @ 7 TeV)

- Top anti-top cross-section :
 - Lepton + jets channel
 - Dilepton channel
- Top quark mass
- Single top (t-channel)
- Early tt resonance searches : (200 pb⁻¹ at 10 TeV)
- Main sources of systematics :

Jet energy scale and resolution, luminosity

• A 95% C.L. limit of σ x BR(X \rightarrow tt) = 3 pb is expected for a narrow ($\Gamma/m \ll 7\%$) spin 1 resonance mass of 1 TeV

Early analyses with ATLAS are expected to extend significantly the mass reach of existing searches

Summary

Top quark physics requires a good understanding of all the detector

- Leptons identification, reconstruction and resolution
- Jets reconstruction, calibration and resolution
- Missing transverse energy calibration and resolution
- B-tagging algorithms

→ In advanced commissioning stage with a good overall data/MC agreement

- First top candidates have been observed with 295 nb⁻¹
- QCD background data-driven estimates already done with the matrix method

9 pb⁻¹ of data are now available and we expect 1 fb⁻¹ by the end of 2011

- Data-driven estimates of Drell-Yan and W+jet backgrounds underway
 - \rightarrow can them be used to establish the top quark signal in ATLAS and the first x-section measurement
- Start on top mass fitting and background studies for single top measurement
- Top quark is a window to physics beyond the Standard Model

A very promising Top quark era has begun now

Backup slides

Electrons

Electrons sources :

- W/Z decays : W(Z) \rightarrow e(e)
- Heavy flavour decay b,c \rightarrow eX
- γ conversion : $\gamma \rightarrow ee$
- Fakes from charged hadrons : $h \rightarrow eX$

Different identification definitions :

- Loose :
 - \bullet Acceptance, E_{T} , fiducial and tracking cuts
 - Lateral width of the shower
- Medium :
 - Strip layer of the EM calorimeter (to reject π^0): fraction of energy f_1 , additional shower shapes
 - Track quality :
 - hits in pixel, pixel+SCT, d₀ , fiducial B-layer
 - Cluster-track matching ($\Delta \eta < 0.01$)

• Tight :

- Hadronic leakage :
 - ratio E_T^{HAD} / E_T^{EM} for first and all Had sampling
- Additional shower shape in the Middle layer
- Hits in the B-layer n_{BL} (against γ conversion)
- Cluster-track matching : ratio E/P (against hadrons)
- Transition Radiation Tracker cuts : number of hits and ratio High/Low thresholds

Muons

Muons sources :

- W/Z decays : W(Z) $\rightarrow \mu(\mu)$
- Heavy flavour decay $b,c \rightarrow \mu X$
- π,K decays in flight
- punch-through and cosmic muons

Muon reconstruction :

- 2 main sub-systems :
 - Inner Detector : pixel, SCT, TRT
 - Muon Spectrometer

Different strategies :

- Stand-alone muon : MS only
- Combined muon : ID + MS
- Segment tagged muon : ID + track segments in MS
- Calorimeter tagged muon : ID + MIP in the calorimeter

MC validated with first data :

 Relative efficiencies measured using the complementarities of the different strategies

\rightarrow agreement within 3%

• Relative momentum scale and resolution :

- Momentum scale < 2% (B & EC)
- Resolution $(10 < p_T < 20 \text{ GeV})$
 - 5% in the barrel
 - 8% in the end caps

 p_{τ} [GeV]

Antoine Marzin (OU)

Main identification algorithm categories :

- Impact parameter based taggers : 1.
 - TrackCounting :
 - . requires at least 2 good tracks with $S_{d0} = d_0 / \sigma_{d0}$ above a threshold
 - JetProb (ALEPH) :
 - . calculate probability for a track to come from PV
 - . combine all tracks in jet to derive a jet probability to originate from PV Track

 $L \sim 1 \text{ nb}^{-1}$

Impact

Main identification algorithm categories :

- 1. Impact parameter based taggers
- 2. Secondary vertex tagger :
 - SVO (default for top analyses) :
 - . explicit reconstruction of the b-hadron decay vertex
 - . use 3D decay length significance $L/\sigma(L)$ as discriminating variable

Number of tracks used for secondary vertex

Main identification algorithm categories :

- 1. Impact parameter based taggers
- 2. Secondary vertex tagger
- 3. Soft muon tagger :
 - exploits semi-leptonic decay of b and c-hadrons to muons : $BR(b \rightarrow \mu \nu X) + BR(b \rightarrow c \rightarrow \mu \nu X) \approx 20\%$ • use p_T (µ) as discriminant variable

Track

Impact Parameter

Antoine Marzin (OU)

Cross-section measurement : ℓ+jet channel

Results assuming a 20% lumi. unc. but we have already achieved 11% with data

M_{iii} [GeV]

350

Antoine Marzin (OU)

LHC-10

150

200

250

300

Cross-section measurement : dilepton channel

• Event selection :

- = 2 isolated leptons (e, μ) with $p_T > 20$ GeV
- \geq 2 jets with $p_T > 20$ GeV
- E_T^{miss} > 20 GeV

Additional cuts for ee or $\mu\mu$ events (against Drell-Yan) :

- E_T^{miss} > 35 GeV
- |M_z M_{ee} | > 5 GeV

Backround determination :

Data-driven methods :

Drell-Yan and fake lepton rates (QCD, W+jets)

• MC: di-bosons, single top

Cross-section measurement :

Simple Cut and Count method + profile likelihood ratio

Uncertainties :

•Main systematics :

signal model, fake rate, ISR/FSR

• Final combined uncertainty (200 pb⁻¹ at 10 TeV) :

$$\frac{\Delta\sigma}{\sigma} = \pm 3(stat) + 10(syst) + 22(lumi)\%$$

Result assuming a 20% lumi. unc. but we have already achieved 11% with data

0.4

0.2

0.8

1.2

o/osm

ATLAS Preliminary Simulation

1.6

Top quark mass (&+jets channel)

• 2 analyses with the template method :

- 1-D analysis : *m_t* measurement only
- \rightarrow loose selection without b-tagging : S/B \approx 1.3
- → Use stabilized mass $m_t^{stab} \equiv \frac{m_t^{reco}}{M_W^{reco}} M_W$ to minimize the impact of JES unc.
 - **2-D analysis :** *simultaneous measurement of m_t and JES*
- → Use b-tagging and and a kinematic fit to reconstruct the ttbar final state : $S/B \approx 8$
- \rightarrow Explicit correction for the difference between b and light JES
 - Need a better understanding of the detector

Uncertainties :

Main sources of systematics are b-JES and ISR/FSR

	Expected uncertainties			
Method	stat	syst	total	
1-D (100 pb ⁻¹)	2 GeV	4 GeV	4.5 GeV	
2-D (1 fb ⁻¹)	0.6 GeV	2 GeV	2.1 GeV	

Single top (t-channel)

t-chan : $\sigma_t \approx \sigma_{tt} / 3$

• Event selection :

- = 1 isolated lepton (e, μ) with $p_T > 20$ GeV
- = 2 jets with p_T > 30 GeV, 1 b-tagged jet
- E_T^{miss} > 20 GeV, M_T (W) > 30 GeV (against QCD)

ttbar and W+jets normalization :

Use a binned likelihood fit to the output of a neural network in a control sample (3 jets)

→ Uncertainty of 14% for W+jets and 7% for ttbar

2 methods for X-section measurement :

• Sequential cuts analysis :

Add kinematical cuts to reject tt and W+jets

Likelihood function analysis :

Likelihood ratio with angular variables to discriminate tt & W+jets

Main sources of systematics :

B-tagging, bkg normalisation, ISR/FSR, Generator

Significance with 200 pb^-1 at 10 TeV : 2.7 σ

200 pb ⁻¹ at 10 TeV				
	Sequential cuts	liqeligoo		
Signal t-chan	118	112		
background	185	127		

Method	Δσ/σ
Seq. cuts	$\pm 15(stat) \pm 35(syst) \pm 11(lumi)\%$
likelihood	$\pm 14(stat) \pm 32(syst) \pm 11(lumi)\%$

Antoine Marzin (OU)

Early tt resonance searches

<u>ଞ୍</u>ଟି 350

ੇ ਬ₃₀₀

00 250 250

200

150

100E

50E

Full

1000

Basic event selection :

- \geq 1 isolated lepton (e,µ) with $p_T > 20$ GeV
- \geq 2 jets with $p_T > 30$ GeV, 1 b-tagged jet
- if M_T (W) < 40 GeV : E_T^{miss} > 60 GeV (against QCD)

Mass spectrum reconstruction :

- Minimal reconstruction : $m_{bjb\ell\nu}$ (for early analyses)
- Full reconstruction : $m_{Z'} = m_{bjjb\ell v} m_{bjj} m_{b\ell v} + 2m_t^{PDG}$
- Monojet approach : jets anti-k_τ, topo, R=1.0
 - \rightarrow for highly boosted top quarks

Sensitivity :

• 2 methods : Bayesian and Feldman - Cousins

95 % C.L. limits	minimal		full		mono-jet	
on $\sigma \times BR(X \rightarrow t\bar{t})$ (pb)	stat. only	incl. syst	stat. only	incl. syst	stat. only	incl. syst 🛓
$m_X = 1$ TeV,						tf)
Z' , Bayesian	3.1	3.6	2.1	2.8	2.2	2.8 🐧
Z', FC	-	-	2.6	2.9	2.0	3.3 🛱
G_{KK} (spin-2), FC	-	-	-	-	1.5	2.6
g_{KK} (broad), FC	-	-	-	-	2.6	3.9
$m_X = 2$ TeV,						
Z' , Bayesian	1.0	1.1	0.5	0.7	0.5	0.5
Z' , FC	-	-	1.0	1.1	0.5	1.1
g _{KK} (broad), FC	-	-	-	-	0.8	1.5

