Electron and photon reconstruction in CMS

S.Baffioni, LLR École Polytechnique

on behalf of the CMS Collaboration

LHC Days in Split, 04/10/2010

2

S. Baffioni

LHC Days in Split

Physics with electrons and photons:

S. Baffioni

2

LHC Days in Split

Physics with electrons and photons:

S. Baffioni

2

LHC Days in Split

Physics with electrons and photons:

S. Baffioni

4

LHC Days in Split

Physics with electrons and photons:

S. Baffioni

2

LHC Days in Split

Physics with electrons and photons:

Detecting electrons and photons

Tracker and ECAL inside a 3.8 T solenoid

S. Baffioni

3

LHC Days in Split

Photon reconstruction

Photon and electron reconstruction:

- Large material budget (~1 X/X₀, up to 1.8)
- High magnetic field (3.8 T)
- \checkmark \rightarrow Conversions and Bremsstrahlung

• \rightarrow SuperCluster (SC): aggregate of ECAL clusters spread in ϕ

DATA vs MC (QCD and γ+jet)

S. Baffioni

4

LHC Days in Split

04/10/10

Endcaps

Road width

Barrel

Photon selection

Photon selection:

\checkmark \rightarrow Signal enriched sample

Data
 MC γ partonic
 MC γ ISR/FSR

MC other

200 250 Photon E_τ (GeV)

Data

MC other

MC γ partonic MC γ ISR/FSR

150

150

S. Baffioni

04/10/10

200 250 Photon E_T (GeV)

Photon conversion

After identification

Conversion identification:

ECAL SC Combination: **450**F CMS preliminary 2010 • ECAL 400 √s = 7 TeV, L = 71 nb⁻¹ 🗕 Data • Tracker 350 [2] γ ΜC 300 p/E < 1 $p/F \approx 1$ ECAL ECAL 250 200 Tracker 150 100 Selection: CMS preliminary 50000 $\sqrt{s} = 7$ TeV. L = 71 nb⁻¹ π° 50 + Data • low angular 40000 0 МС 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 separation p_/E_{cand.} 30000 good vertex 2000 10000 0-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 $\Delta \phi$ tracks at vtx. S. Baffioni LHC Days in Split 04/10/10 6

Electron reconstruction

Electron candidate = Track + ECAL SuperCluster:

- Track seeding driven by

 ECAL (isolated electrons in W/Z p_T range)
 or Tracker (non isolated or low p_T electrons)

 Gaussian Sum Filter tracking

 fraction of brem energy loss (fbrem)
 track reconstructed right out to ECAL surface
 Association Track/SC
 - Classification of electrons
 - with respect to their brem fraction
 - E & p combination for better momentum estimation

Electrons in Minimum Bias events

Electron candidates in Minimum Bias:

- Mainly hadrons (61.5%) photon conversions (33.9%), very few real electrons (4.6%)
- Useful to commission electron variables and early detect features

S. Baffioni

LHC Days in Split

W and Z events

↓ With increasing lumi: commissioning of $p_T > 20$ GeV electrons

- W events

 - no hadronic activity
 - electromagnetic trigger

Z Tag and Probe

- **tag**: well defined electron (triggered, identified and isolated)
- probe: high E_T isolated SuperCluster, Z mass cut, ID

- $\bullet \rightarrow$ electron key variables
- \bullet \rightarrow reconstruction, isolation and ID efficiencies

S. Baffioni

Electron seeding

Ecal driven seeding

- $\checkmark \Delta \varphi_{2}, \Delta z_{2}$
 - between hit position
 - and expected one in the second pixel layer
 - in the barrel pixels

W events

10

LHC Days in Split

Electron key variables

Key variables for electrons in W events

S. Baffioni

Electron reconstruction efficiency

- Efficiency with respect to SuperCluster:
 - Measured with Z Tag&Probe method (~70 Zee)

Z Tag & Probe	Measured efficiency	Error (stat. + syst)	MC efficiency
Reco Eff Barrel	99.3%	1.4%	98.5%
Reco Eff Endcap	96.8%	3.4%	96.1%

Electron selection

Simple Cuts for early analyses:

- Defined to select W events at 95% (WP95) and 80% (WP80)
- Separation barrel/endcaps
- Based on ID (shower shape, track-SC matching), isolation (track, ECAL, HCAL), conversion rejection

Efficiency measured with Z Tag&Probe

Z Tag & Probe	Measured efficiency	Error (stat. + syst)	MC efficiency
WP95 Barrel	92.5%	3.2%	95.4%
WP95 Endcap	86.4%	6.7%	92.9%
WP80 Barrel	77.5%	4.7%	85.1%
WP80 Endcap	75.1%	8.6%	76.2%
WP80 Endcap	75.1%	8.6%	76.2%

With increasing luminosity: cuts in categories

Categories as function of fbrem, E/p, p_T and barrel/endcaps

S. Baffioni

LHC Days in Split

Electron fake rate

Fake rate = number of electrons with ID / number of electrons

New data analyzed

Perspectives

LHC Days in Split

04/10/10

S. Baffioni

16

S. Baffioni

Perspectives GeV/c² 12 MC experiment • H→ZZ*→4e Higgs signal $m_{\rm H} = 150 \; {\rm GeV/c^2}$ 30 fb⁻¹ ZZ* 10 III Zbb Events / 2 MC 14 TeV 10⁹ E LHC, pp at√s=7 TeV 10⁸

200

Conclusion

♦ With 74 nb⁻¹ and 198 nb⁻¹ at $\sqrt{s} = 7$ TeV

CMS has commissioned the key observables for the reconstruction, identification and isolation of primary electrons and photons

Photons :

 key observables have been compared between data and MC simulation for background and photon enriched samples and found in very good agreement

Electrons:

- Reconstruction and selection efficiencies have been measured and found to be very close to MC simulation
- Fake rate has been measured and found in good agreement with expectation
- ✤ ~ 7 pb⁻¹ under analysis
- $4 \sim > 30 \text{ pb}^{-1}$ at the end of 2010 ?

References

- CMS-DPS-2010-032 -- *Electron Reconstruction and Identification at* $\sqrt{s} = 7 TeV$
- CMS-PAS-EGM-10-005 -- Photon reconstruction and identification at sqrt(s) = 7 TeV
- ◆ CMS-PAS-EWK-10-002 -- Measurements of Inclusive W and Z Cross Sections in pp Collisions at $\sqrt{s} = 7$ TeV
- CMS-PAS-PFT-10-003 -- Commissioning of the Particle-Flow Reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV
- Eur. Phys. J. C 49 -- *Electron reconstruction in CMS*
- ↓ CMS NOTE-2006/115 -- Discovery potential for the SM Higgs boson in the H → ZZ^(*) → 4e decay channel