Low p_T -physics in ATLAS

<u>Oldřich Kepka</u> (Institute of Physics, Academy of Sciences, Prague)

> On behalf of the ATLAS Collaboration October 5th, 2010, Split

Minimum Bias Physics

• Total = elastic + ND + SD + DD

Motivation:

- Improve understanding/modeling of non-perturbative soft QCD processes
- ND QCD motivated models with many parameters; tuning important for high p_{τ} -physics
 - Background when >1 interactions per bunch crossing
 - Parameters have impact on high p_T (e.g. color reconnection)
- SD+DD not well constrained by models and little data available

Objective:

- Measure spectra of primary charged particles corrected to hadron level (τ > 3x10⁻¹¹s)
- Inclusive measurement do not apply model dependent corrections (e.g. Non-single diffractive distribution) => allow theorist to tune their models to data measured in well defined kinematic range
- O. Kepka, LHC Days 2010

Minimum Bias in ATLAS

 Inclusive charged particle spectra @ 0.9 and 7 TeV $p_T > 100 \text{ MeV}, n_{ch} \ge 2, |\eta| < 2.5$ ATLAS-CONF-2010-046 $p_T > 500 \,\mathrm{MeV}, n_{ch} \ge 1, |\eta| < 2.5$ Phys. Lett. **B** 688, 1, ATLAS-CONF-2010-024 ATLAS-CONF-2010-047 (2.36 TeV) $p_T > 500 \,\mathrm{MeV}, n_{ch} \ge 6, |\eta| < 2.5$ ATLAS-CONF-2010-031 🔷

- diffraction suppressed sample, used to derive AMBT1

- Underlying event using tracks
- Angular correlation between charged particles
 - Measurements probing event topologies @ 0.9 and 7TeV (p_{τ} >500 MeV)
- AMBT1 Pythia 6 Tune
 - using measurements of high-p_⊤ tracks
 - gives better extrapolation down to 100 MeV

discussed today

Outline

- Inner detector, dataset, event selection
- Correction procedure
- Inclusive charged particle spectra
- Angular correlations between charged particles
 - new observable to probe models of MB physics
- Underlying event measurement

The ATLAS Inner Detector

Scatter Plot of Hits on Tracks

Pixel Detector

- 3 barrel layer; 2x3 end-cap disks
- Silicon Strip Tracker (SCT)
 - 4 double-sided barrel layers; 2x9 endcap disks
- Transition Radiation Tracker (TRT)
 - 73 barrel straw tubes
 - ~32 hits per track
- Minimum Bias Trigger Scintillator (MBTS)
 - Inside the end-cap calorimeter
- 2 disks covering 2.1<| η |<3.8
- 3.6 m from interaction point

Dataset and Event Selection

Event selection

- MBTS single arm trigger
- 1 Reconstructed Vertex
 - 2 tracks + Beam Spot
 - Remove multiple interactions
 - If second vertex \geq 4 tracks
- 0.9 and 7 TeV
 - ≥ 2 selected tracks
 - $p_{_T}$ > 100 MeV, $|\eta|{<}2.5$
 - Use low p_T-tracking to go down to 100 MeV

Dataset

- 0.9 TeV (~7 µb⁻¹)
 360K events, 4.5M tracks
- 7 TeV (~190 µb⁻¹) 10M events, 210M tracks

Correction procedure

• Event-wise correction for trigger and vertex efficiencies

$$w_{\text{ev}}(n_{\text{Sel}}^{\text{BS}}) = \frac{1}{\varepsilon_{\text{trig}}(n_{\text{Sel}}^{\text{BS}})} \cdot \frac{1}{\varepsilon_{\text{vtx}}(n_{\text{Sel}}^{\text{BS}})}$$

 n_{Sel}^{BS} – number of particles wrt. Beam Spot, cuts as close as possible to the final selection

$$w_{\text{trk}}(p_{\text{T}},\eta) = \frac{1}{\epsilon_{\text{bin}}(p_{\text{T}},\eta)} \cdot (1 - f_{\text{sec}}(p_{\text{T}},\eta)) \cdot (1 - f_{\text{okr}}(p_{\text{T}},\eta))$$

- Correct for tracks outside kinematic range: $f_{_{okr}}(p_{_{T}},\,\eta)$
- e.g. track p_T >100 MeV, but particle p_T below

Track-wise correction – tracking efficiency

- Using Bayesian unfolding to correct both the multiplicity $n_{_{ch}}$ and $p_{_{T}}$
- Mean $p_T vs n_{ch} bin-by-bin$ correction of average p_T , then n_{ch} migration

Efficiencies

Tracking efficiency from MC – systematic dominated by knowledge of material budget (determined by SCT extension efficiency)

Removal of non-primary tracks

• Fraction of non-primaries

High-p_T Tracks

- Determined with side-band fits of d_0 and z_0 distributions to data
- Below p_T<500 MeV large electron component from photon conversions
- Removed on statistical basis

- At high |η| large extrapolation distance (~1m) between SCT and Pixel, additional material
 - Some particles mis-reconstructed as high- $p_{\scriptscriptstyle T}$ tracks
 - Remove by cut on χ^2 probability of the track fit above $p_T > 10 \text{ GeV}$

$\mathbf{1}/\mathbf{N_{ev}}~\mathbf{dN_{ch}}/\mathbf{d}\eta$

- Models differ mainly in normalization, shape similar. Track multiplicity underestimated.
- n_{ch}≥6, p_T>500 MeV measurement used in AMBT1 tune

$1/(2\pi p_T) \ 1/N_{ev} \ dN_{ch}^2/d\eta dp_T$

- Measurement spans 10 orders of magnitude
- Large disagreement at low $\boldsymbol{p}_{_{T}}$ and high $\boldsymbol{p}_{_{T}}$
- Improvement at medium $p_{\scriptscriptstyle T}$ for AMBT1 tune

$1/N_{\mathbf{ev}} \; dN_{\mathbf{ev}}/dN_{\mathbf{ch}}$

- Low n_{ch} not well modeled by any MC; large contribution from diffraction
- Peak at 10 particles well described by AMBT1

$\mathbf{Mean} \ \mathbf{p_T} \ \mathbf{vs.} \ \mathbf{N_{ch}}$

AMBT1 and Pythia8 with hard diffractive component give best description

 $\langle p_{\rm T} \rangle$ [GeV] Shape at low n_{ch} sensitive to ND, SD, DD fractions $\textbf{\textit{p}}_{_{T}}$ > 100 MeV, $\mid \eta \mid$ < 2.5, $\textbf{\textit{n}}_{ch}$ \geq 2 • Data \s = 7 TeV 0.9 $\langle p_{\gamma} \rangle [\text{GeV}]$ $\langle p_{\gamma} \rangle [\text{GeV}]$ PYTHIA MC09 --- ND --- SD --- DD p_{\perp} > 100 MeV, $|\eta|$ < 2.5, n_{ch} \geq 2 $p_{\tau} > 100 \text{ MeV}, |\eta| < 2.5, n_{ch} \ge 2$ 0.8 0.8 ∖s = 0.9 TeV ∖s = 7 TeV 0.7 0.9 ATLAS Preliminary ATLAS Preliminary 0.7 0.8 0.5 0.6 0.7 0.4 ATLAS Preliminary 0.5 0.6 Λ 20 40 60 80 100 0.5 n_{ch} 0.4 Data 2009 Data 2010 p_{γ} [GeV] 0.4 $p_{_{T}}$ > 100 MeV, $|\eta|$ < 2.5, n_{ch} \ge 2 PYTHIA ATLAS AMBT1 PYTHIA ATLAS AMBT1 0.3 **PYTHIA ATLAS MC09** PYTHIA ATLAS MC09 • Data √s = 7 TeV 0.3 PYTHIA DW PYTHIA DW 0.9 PYTHIA 8 --- ND --- SD --- DD PYTHIA 8 PYTHIA 8 0.2 0.2 0.8 PHOJET PHOJET 0.7 1.2 $1/N_{ev}^{1} dN_{ev}/dN_{ch}$ 0.6 Ratio Ratio 0.5 0.4 ATLAS Preliminary 💻 Data Uncertainties **Data Uncertainties** 0.9 20 40 60 80 0.8 100 MC / Data ···· MC / Data n_{ch} 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 90 100 10 $n_{\rm ch}$ $n_{\rm ch}$ Pythia6 – softer spectrum at low n_{ch} – too large n_{ch}≥2, p_T>100 MeV diffractive component?

Angular Correlations

- Aim to measure new observable which is sensitive to differences between current models
- $\Delta \varphi$ azimuthal angle between p_{τ} -leading particle and all non-leading ones
- Measured in same and opposite regions wrt. to leading particle (e.g. η(leading) < 0 => same η<0; opposite η > 0)
- More particles produced in **same** region
- Same minus opposite, subtract minimum => $\Delta \phi$ crest shape

$\Delta \Phi$ crest shape

O. Kepka, LHC Days 2010

15

Underlying Event

- Underlying event processes occurring in addition to hard QCD scattering
 - Beam-beam remnants
 - Multi-parton interactions
 - Contributions from initial/final state radiation
- Transverse region perpendicular to hard scatter sensitive to UE
- Leading track p_T>1GeV to suppress diffraction
- Models have problems describing transverse region

Away

3

Multiplicity & Std. Deviation

• Average tracks multiplicity in the plateau about 2 times higher than seen in inclusive MB

(mean density 0.9 translates to 5.5 particles when towards/away regions included; to be compared with ~2.4 particles in inclusive MB) O. Kepka, LHC Days 2010

 If particles produced independently => Poisson distribution expected

 $\sqrt{0.9} \simeq 1.6 \times 0.6$

Scaling factor 1.6 suggests that particles are not produced independently

Mean p_T vs. N_{ch}

- Example: DW which was tuned to CDF UE data describes transverse region, but problems in away region
- Is not described either in inclusive MB
- Other variables: mean $\textbf{p}_{_{T}}$ vs $\textbf{p}_{_{T}}(\text{lead}),$ <d^2 $\Sigma p_{_{T}}/d\eta d\textbf{p}_{_{T}}>$
 - => many observables for model tuning

Conclusion

 $1/N_{\rm ev} \cdot dN_{\rm ch}/d\eta$

PYTHIA ATLAS MC09c

PYTHIA Perugia0 PYTHIA DW

- ATLAS measures charged particle spectra down to 100 MeV
- @ 0.9, 2.36, 7 TeV
- No-model dependent corrections
- p_T> 100 MeV
 - model extrapolation to higher energies very different
 - models underestimate the particle multiplicity down to low-p_{τ}
- p_T> 500 MeV
 - AMBT1(tunned to first LHC data) describes energy evolution well
- Angular correlation and UE measurements add information about the event structure
- All MB and UE measurements corrected to hadron level
- Publication of data dedicated to tuning of phenomenological models in preparation

