

Physics Landscape in the 90's: Questions

1. SM contains too many apparently arbitrary features - *presumably these should become clearer as we make progress towards a unified theory.*

2. SM has an unproven element: the generation of mass *Higgs mechanism ? or other physics ?*Answer will be found at LHC energies

e.g. why $M_{\gamma} = 0$ $M_{W}, M_{Z} \sim 100,000 \text{ MeV}!$

3. SM gives nonsense at LHC energies

Probability of some processes becomes greater than 1 !! Nature's slap on the wrist! *Higgs mechanism provides a possible solution*

4. Supersymmetry?

Even if the Higgs exists all is not 100% well with SM alone: next question is "why is (Higgs) mass so low"? If a new symmetry (Supersymmetry) is the answer, it must show up at O(**1TeV**)

5. SM is logically incomplete – does not incorporate gravity Superstring theory ⇒ dramatic concepts: supersymmetry, extra space-time dimensions ? New physics at TeV scale?

Physics Landscape: Alternatives (incomplete set)

Fundamental Higgs unattractive in all but SUSY theories

If no fundamental Higgs boson found at FNAL/LHC then SSB may proceed via a dynamical mechanism

QCD inspired Identify W_L and Z_L with 'pions' of a new interaction rescale f_{π} to $1/\sqrt{G_F}$ leading to strong interaction in TeV range V_L- V_L scattering is a replica of π - π scattering

Technicolour

Dampening of Higgs-less SM via a techni- ρ Wealth of new states predicted

Transparency from the early 90's

Strong breaking of E-W symmetry

No Higgs boson but a triplet of massive bound states - vector bosons $V^0,$ $V^\pm~$ (similar to techni- $\rho)$

Experimentally at LHC

Find new particles/new symmetries/new forces?

- ⇒ Origin of Mass Higgs boson(s)
- ⇒ Supersymmetric particles a new zoology of particles, dark matter particle? ...
- ⇒ Extra space-time dimensions: gravitons, Z' etc. ?
- The Unexpected !!

Studies of CP Violation and Quark Gluon Plasma

The LHC Project

LHC and CMS Timeline

- 1984 Workshop on a Large Hadron Collider in the LEP tunnel, Lausanne
- 1987 Rubbia "Long-Range Planning Committee" recommends Large Hadron Collider as the right choice for CERN's future
- 1990 ECFA LHC Workshop, Aachen (CMS design first presented)
- 1992 General Meeting on LHC Physics and Detectors, Evian les Bains
- 1993 Letters of Intent (ATLAS and CMS selected by LHCC)
- 1994 Technical Proposals Approved
- 1996 Approval to move to Construction (ceiling of 475 MCHF)
- 1998 Memorandum of Understanding for Construction Signed
- 1998 Construction Begins (after approval of Technical Design Reports)
- 2000 CMS assembly begins above ground. LEP closes
- 2004 CMS Underground Caverns completed
- 2008 CMS ready for LHC beams. The LHC incident 19th Sept
- 2009 CMS records first collisions_{AC Days Split10-tsv}

Daniel and CMS Physics

Courtesy: Sergio di Vittorio Veneto

CMS Physics "coordinator" until 2003

Building the Collaboration: The Grand Tours

In the early 1990s we went far and wide to build the CMS collaboration.

Physics According to the Gospel of Daniel

CMS

B-jet tagging 2 B-Phymas issues · Impoct por water resolution (V. Karwal.) · b-jet tagging with tracks with significant i.p. and recording reations (R.Kinnunen, A. Come) B-plyaces issues - sec. W/x. recounting the · Use of low Et clectrons 54Et & 10 Cer for B-togging at 1/ -> ete - (Whiteko, Verschia, Lemarque, Vite, Puljak, Prolovoxio-· Reevaluation of performance on IP (Sin 20, Din 2B) A. Deedelara, Rocco, Vite, Propose. · B - togging with charge (V. Roinskuil.) · B- oscillations reach (A. Starodumor...) Heavy Jous Physics · Digitisation, clustering, pattern recognition resolution O. Kodolova, M. Bedjio Bochpround studies, M. Bedidian, Harohannian (ALICE is CAR d)
Signal varuation (inty", DY, Z-20ty)
Jet recognition R. Krotidze, R. Clanidz

CMS Collaboration

AACHEN-1, AACHEN-3A, AACHEN-3B, ADANA-CUKUROVA, ANKARA-METU, ANTWERPEN, ATHENS, ATOMKI, AUCKLAND, BARI, BEIJING-IHEP, BOGAZICI, BOLOGNA, BOSTON-UNIV, BRISTOL, BROWN-UNIV, BRUNEL, BRUSSEL-VUB, BRUXELLES-ULB, BUDAPEST, CALTECH, CANTERBURY, CARNEGIE-MELLON, CATANIA, CCCS-UWE, CERN, CHANDIGARH, CHEJU, CHICAGO, CHONNAM, CHUNGBUK, CHUNGLI-NCU, COLORADO, CORNELL, DEBRECEN-IEP, DELHI-UNIV, DEMOKRITOS, DESY, DONGSHIN, DUBLIN-UCD, DUBNA, EINDHOVEN, FAIRFIELD, FERMILAB, FIRENZE, FLORIDA-FIU, FLORIDA-STATE, FLORIDA-TECH, FLORIDA-UNIV, FRASCATI, GENOVA, GHENT, HAMBURG-UNIV, HEFEI-USTC, HELSINKI-HIP, HELSINKI-UNIV, HEPHY, IOANNINA, IOWA, IPM, ISLAMABAD-NCP, JOHNS-HOPKINS, KANGWON, KANSAS-STATE, KANSAS-UNIV, KARLSRUHE-IEKP, KHARKOV-ISC, KHARKOV-KIPT, KHARKOV-KSU, KONKUK-UNIV, KOREA-UNIV, KYUNGPOOK, LAPP, LAPPEENRANTA-LUT, LIP, LIVERMORE, LONDON-IC, LOUVAIN, LYON, MADRID-CIEMAT, MADRID-UNIV, MARYLAND, MEXICO-IBEROAM, MEXICO-IPN, MEXICO-PUEBLA, MEXICO-UASLP, MILANO-BICOCCA, MINNESOTA, MINSK-INP, MINSK-NCPHEP, MINSK-RIAPP, MINSK-UNIV, MISSISSIPPI, MIT, MONS, MOSCOW-INR, MOSCOW-ITEP, MOSCOW-LEBEDEV, MOSCOW-MSU, MOSCOW-RDIPE, MUMBAI-BARC, MYASISHCHEV, NAPOLI, NEBRASKA, NICOSIA-UNIV, NORTHEASTERN, NORTHWESTERN, NOTRE DAME, NUST, OHIO-STATE, OVIEDO, PADOVA, PAVIA, PEKING-UNIV, PERUGIA, PISA, POLYTECHNIQUE, PRINCETON, PROTVINO, PSI, PUERTO RICO, PURDUE, PURDUE-CALUMET, RAL, RICE, RIE, RIO-CBPF, RIO-UERJ, ROCHESTER, ROCKEFELLER, ROMA-1, RUTGERS, SACLAY, SANTANDER, SAO PAULO, SEONAM, SEOUL-EDU, SEOUL-SNU, SHANGHAI-IC, SKK-UNIV, SOFIA-CLMI, SOFIA-INRNE, SOFIA-UNIV, SPLIT-FESB, SPLIT-UNIV, ST-PETERSBURG, STRASBOURG, SUNY-BUFFALO, TAIPEI-NTU, TALLINN, TASHKENT, TBILISI-IHEPI, TBILISI-IPAS, TENNESSEE, TEXAS-TAMU, TEXAS-TECH, TIFR-EHEP, TIFR-HECR, TORINO, TRIESTE, UCDAVIS, UCLA, UCRIVERSIDE, UCSB, UCSD, UNIANDES, VANDERBILT, VILNIUS-ACADEMY, VILNIUS-UNIV, VINCA, VIRGINIA-TECH, VIRGINIA-UNIV, WARSAW-IEP, WARSAW-INS, WARSAW-ISE, WAYNE, WISCONSIN, WONKWANG, YEREVAN, ZAGREB-RUDJER, ZURICH-ETH, ZURICH-UNIV

October 2009: 182 Institutions with about 3110 scientists and engineers ~ 2000 Signing Authors (including students)

Detector Design: Benchmarks in Early 90's

Very good muon identification and momentum measurement Trigger efficiently and measure sign of TeV muons dp/p < 10%

High energy resolution electromagnetic calorimetry $\sim 0.5\%$ @ E_T ~ 50 GeV

Powerful inner tracking systems Momentum resolution a factor 10 better than at LEP

Hermetic calorimetry Good missing E_T resolution

(Affordable detector)

Transparency from the early 90's

Detector Landscape circa 1990

Magnets

Solenoids, 2T, length/radius ratio ~ 1

Trackers

TPCs, wire chambers, fibre trackers, ~ 10% @ p_T ~ 100 GeV LEP detectors had not yet introduced Si micro-vertex detectors

Calorimeters

Sampling, granular, low volume crystals

Muon Chambers

Mostly for identification purposes rather than momentum measurement Often needing upgrading

Trigger & Data Acquisition

Multiple levels of hardware triggers before going into computer farms

Crucial Selections and Stages

Selection of

- 1. High magnetic field solenoid
- 2. All silicon tracker
- 3. ¹/₄ um rad hard electronics
- 4. Lead tungstate crystals coupled to APDs
- 5. Redundancy in the muon system
- 6. Single hardware Level-1 trigger and then in HLT in computer farm

Accomplish

- 1. Assembly and Installation
- 2. Detectos Commissioning and Running
- 3. Preparation of Computing, Software and Physics Analysis (code and people)

CERNE CRAYED SELIT PSTON 15

CMS Detector

SILICON TRACKER Pixels (100 x 150 μm²) ~1m² ~66M channels Microstrips (80-180μm) ~200m² ~9.6M channels

> CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76k scintillating PbWO₄ crystals

PRESHOWER Silicon strips ~16m² ~137k channels

STEEL RETURN YOKI ~13000 tonnes

> SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

Total weight Overall diameter Overall length Magnetic field : 14000 tonnes : 15.0 m : 28.7 m : 3.8 T HADRON CALORIMETER (HCAL)

Brass + plastic scintillator ~7k channels MUON CHAMBERS

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

FORWARD CALORIMETER Steel + quartz fibres ~2k channels

Proposal: Assembly of CMS

Surface Hall

A. Herve From '92 CMS LoI Presentation

The CMS magnet will be assembled and tested in the surface Hall The muon detector will be mounted on the magnet This necessitates a hall of 94 m x 23 m x 23 m

Underground Cavern

The modular CMS detector allows an easy transfer to and installation in the underground cavern The size (L = 60 m, \emptyset = 26 m) is chosen such that an easy access for maintenance is possible

Courtesy: Sergio di Vittorio Veneto

A Key Player in the Approval of CMS

Presented by

M. Della Negra Concept and DesignE. Radermacher Tracking and Muon SystemT. Virdee Calorimetry, Trigger and DAQD. Denegri Physics

Starting Point for Design: Magnetic Field for Muon

Complementary Conception

The Choice of the Magnetic Field configuration for the measurement of muons drives the experiment design

Identify and measure muons after full absorption of hadrons Air-core toroid Good stand-alone p_{μ} measurement p_{μ} measurement safe at high multiplicities solenoid needed for inner tracking σ_{pT} flat with η

High field solenoid placed after calorimetry Fe flux return

Measurement of p in tracker and B return with single magnet

Solenoid: Hi p muon tracks point back to vertex Reasonable stand-alone measurement σ_{pT} degrades progressively with η for tracks exiting the open end of the solenoid

LHC Days Split10-tsv

CMS Superconducting Solenoid

Mechanically reinforced conductor,4 layers winding (enough Ampere turns)5 modules (to limit unit length of conductor)

CMS Superconducting Solenoid

Choosing Tracking at LHC

Factors that determine performance Track finding efficiency – occupancy/crossing Momentum resolution Secondary vertex reconstruction

 $\leq 4.10^{7} \text{ h}^{\pm}/\text{cm}^{2}/\text{s}$ pixels (~10⁴ µm²) occupancy ~ 10⁻⁴ $\leq 4.10^{6} \text{ h}^{\pm}/\text{cm}^{2}/\text{s}$ Si µ-strip det. (~10 mm²) occupancy ~ 1% $\leq 4.10^{5} \text{ h}^{\pm}/\text{cm}^{2}/\text{s}$ Si or Gas detectors. (~1 cm²)

occupancy $\approx 1\%$

Contemplations

Choosing Tracker Technologies

Two issues to be pushed (ous dered - important for all of chounds i) Jusert in B- Planer simulations - fall App is p & parametrizations - realistic errors ou track angless > to have realistic/optimized mosts resolutions - particularly supertant for blog & rejection in Bit > IT TT ie) Evaluate impact on plynes (B, E, top etc) of improved import parameter resolution - u- rester detector at smaller inner radius possibly limited to Lint & 10 33 > Extremely voluable for B-physics see CDF results !! · could be helpfull for Att > ??? • top -> 1 lept + bist - tores + jets' final state

QUESTION 0: From L. Foa, CMS Main Referee 1992 General question that concerns all experiments: What can your e.m. calorimeter do in a "stand alone" mode, I mean if you have to switch off your inner tracking because of excessive rate ?

All Silicon Tracker

Technologies Considered Scintillating fibres, MSGCs, Si Pixels, Si Microstrips

Si technology (ideally) suited to LHC environment

Early 1990's: At the time of the Conceptual Design of the pp Experiments

- Radiation damage poorly understood
- Cost/unit area was prohibitively large
- Large no. of channels required

What was done

- Ieakage current dealt with fast amplifiers
- HV behaviour improved by careful processing
- Si detectors had to be kept permanently cold
- Cost/unit area significantly reduced by growing larger diameter ingots (6" instead of 4"), simpler single-sided processing (p-on-n)

 Implementation of front-end read-out chip in industry standard deep submicron technology
 LHC Days Split10-tsv

Choosing Tracker Technologies: All Si Layout

- In 1999 progress over the previous 10 years had been sufficient for CMS to go to an "all silicon" tracker
- Small matter of producing 200 m² of Si microstrip detectors
 - Introduce a large degree of automation usual in microelectronics industry

Hybrid Pixels: ~ 1 m² of silicon sensors, 67 M pixels, 100x150 μ m², 3 pts, r = 4, 7, 11 cm Si μ -strips : 223 m² of silicon sensors (15-kpm odules), 10 M strips, 10 pts, r = 20 - 120 cm

Choosing Radhard Electronics: Deep Sub-micron Tracker Electronics Chain

CMS Tracker Components

Choosing the Technology for ECAL

CMS chose Lead Tungstate Scintillating Crystals coupled with APDs 3 other technologies were considered (shashlik, CeF₃, heavy glass)

Driving Physics Design Goal Measure the energies of photons from a decay of the Higgs boson to a precision of $\leq 0.5\%$.

Photomultiplier Readout

Si Photodiode Readout

Avalanche Photodiode Readout

- Idea (1993 few yellowish cm³ samples)
 - → R&D (1993-1998: improve rad. hardness: purity, stoechiometry, defects)
 - → Prototyping (1994-2001: large matrices in test beams, monitoring)
 - → Mass manufacture (1997-2008: increase production, QC)
 - → Systems Integration (2001-2008: tooling, assembly)
 - \rightarrow Installation and Commissioning (2007-2008)
 - → Data Taking (2008 onwards)

Production of Crystals

Installation of Barrel ECAL

Choosing the Technology for the HCAL

WLS fibres embedded in plastic scintillator plates a technique first proposed for the upgrade of UA1

Routing of clear fibres to optical disconnects

Choosing Technologies for the Muon System

CMS Muon Detectors: DTs and CSCs

Assembly and Installation

Assembling and Installing Cables, Pipes and Optical Fibres !

Nov 2007 Took 50'000 man hours

CMS Detector in Dec 2007

CMS Ready for Beam in Sept'08

Choosing Technologies for Event Selection

Preparing Computing, Software and Physics Analysis

These activities were not as visible as the hardware but are equally important Many years of preparation by many

Software for calibration, alignment, reconstruction, high level trigger online, physics analysis

Computing at Point 5, CERN main site, distributed, link with WLCG **Physics** analysis worldwide

Preparation via more and more realistic Data Challenges

(DC04, CSA06, CCRC08 and CSA08, October 09 Exercise) Re-engineer CMS software in 2005-2006 (CMSSW) Physics TDR in 2006 (Vol1 performance, Vol2 physics up to 30fb⁻¹) MTCC in 2006 and CRAFT in 2008 and 2009

MTCC- Magnet Test and Cosmic Challenge, CRAFT – Cosmics Run At Four Tesla)

Commissioning using Cosmics and Beam Splashes

Great state of readiness at start of run thanks to extensive studies with ~1G cosmic μ events (2008-09), beam splash events (2009), and detector description in MC.

Example: CMS – 25 Performance papers

Muon Charge Ratio

Collisions at 2.36 and 7 TeV!

Data Transfers, CPU, Analysis (jobs, people,..) ...

Good experience so far: the whole offline and Computing organization + GRID infrastructure performing very well.

CMS is well-described in simulation e.g. Tracker

Using complementary methods: conversions, nuclear interactions, multiple scattering etc Material uncertainty today better than 10%->Systematics uncertainties on physics quantities related to material budget <1%.

LHC Days Split10-tsv

Physics Objects

The CMS detector is performing very well

Commissioning of Physics Objects is well advanced

- Charged track reconstruction, electrons, photons, muons and taus
- Jets & MET
 - Refine noise filters, cleaning algo's
 - Optimization of jet algorithms for resolution, scale, lepton and γ fakes, etc.
- Commission higher level algo's
 - B tagging
 - Particle Flow

Also calibrate with known objects

Study candles for leptons and photons

 $\Box \pi^{0}, \eta, ..., \Upsilon, \psi, ...$ initially to understand the detector, tracking, object id's

• Extend to W, $Z \rightarrow$ leptons

Combining All Information: Particle Flow

Combining Calorimetry and Tracking

Particle Flow aims at reconstructing all stable particles in the event, i.e., electrons, muons, photons & charged and neutral hadrons from the combined information from all CMS sub-

detectors, to optimize the determination of particle types, directions and energies

CMS is particularly suited for this:

- Powerful Si tracker

EM calorimeter with fine granularity
& small Moliere radius
(NB: CMS has 4T B-field & HCAL
has moderate performance)

Combining Calorimetry and Tracking

Analysing Complex Events

 (η, ϕ) view of a particle-flow reconstructed event. Reconstructed particles are represented as circles with a radius proportional to their pT. The direction of the MET computed from all particles is drawn as a solid horizontal straightline. Particle-based jets with pT> 20 GeV/c are shown as thinner circles representing the extension of the jet in the (η, ϕ) coordinates.

Progress in MET

Excellent resolution and small non-gaussian tails. Understanding all sources of erratic noise is very important for cleaning the distributions. MET ready for physics.

CMS - 50 Years of Particle Physics

Sophisticated software and computing systems in place and functioning

Muons in CMS

LHC / HL-LHC Reach

- The LHC project (the accelerator and experiments) was conceived & designed to attack fundamental questions in science.
- CMS (and ATLAS) are unprecedented instruments in scale and complexity operating in an unprecedented & hostile environment.
- Driven by the science many technologies pushed to their limits.
- The Project has required a long and painstaking effort on a global scale.
- •After twenty years spent on the design, R&D, prototyping, construction, assembly and commissioning CMS is recording high energy collisions.

The thorough preparation of the experiment, the offline and computing systems, and physics analysis work flows has allowed very rapid extraction of quality physics results.

- All systems are performing very well CMS is already approaching design performance in many areas! Much physics is streaming out and CMS is already exploring new territory in certain areas.
- We are just at the beginning all expectations are that the future is bright .

Daniel the Polymath

ide,

Daniel – the Scientist

To me there has never been a higher source of earthly honour or distinction than that connected with advances in science.

Sir Isaac Newton

And Daniel, to the next 20 years

Inclusive jet cross section

Inclusive jet p_T spectra measured for all three jet approaches used in CMS.

All results are in good agreement with NLO theory.

With the new Particle Flow approach the distributions can be extended to a low $p_{\rm T}$ value of 18 GeV.

Extraction of the W[±] (Z^o) \rightarrow e[±] $(\mu^+\mu^-)$ yield signal

Lepton+jets Top selection

Require at least 1 jet b-tagged (secondary vertex tagger with ≥2 tracks; high efficiency with ~1% fake rate)

Use 0.84 pb⁻¹ (HCP Toronto dataset)

For N(jets)≥3 we count **30 signal** candidates over a predicted background of 5.3

t-tbar events are observed in CMS at a rate consistent with NLO cross section, considering experimental (JES, b-tagging) and theoretical (scale, PDF, HF modelling, ...) uncertainties.

Exploring new territory

Search for narrow resonances in di-jet final states.

We have measured, in 0.84pb⁻¹ of data, the dijet mass differential cross section for $|\eta_1,\eta_2|<2.5$ and $|\Delta\eta_2|<1.3$. The distribution is sensitive to the coupling of any new massive object to quarks and gluons.

95% CL mass limits for String resonances >2.1TeV; Excited quarks >1.14TeV; Axigluons/Colorons >1.06TeV; E₆ Diquarks >0.58