

Development of µHV (miniature HV supplies) at Nikhef

Henk Boterenbrood, Harry van der Graaf, Henk Groenstege, Ruud Kluit, <u>Fred Hartjes</u> and Jaap Kuijt

> RD51 Collaboration workshop Freiburg, 25 May 2010

Why developing HV power supplies?

• Getting a HV supply that is dedicated for gaseous detectors

- Fast trip in sub µA region
- Accurate current measurement in nA region
- Small unit, not too expensive
- Fast remote control
- Gently ramping to target voltage

 In addition, for large scale HEP experiments, one would like having these units close to the detectors in the hot region

- Non-magnetic
- Minimal mass
- Radhard
- Low noise emittance

Developing two designs

- **1. Mini HV** for use in the lab, testbeams etc
 - Practical in use, relatively small, not completely antimagnetic

But **NO** inductors, transformers

2. Micro HV for use near the detectors in a big experiment

• Very low mass, non-magnetic, radhard (until 1000 Mrad/ 10⁷ Gy)

Presently we are developing **mini HV**

Preliminary specs of mini HV, version 2

- Output ~ -3 to -1000V @ 1.8 μA max
 - Steps of 73.6 mV
- Ripple 2 mV p-p @ 1 μA expected
- Ramping: initially linear, followed by exponential approach to target voltage
 - Linear part adjustable in units of 73.6 mV/s
- Current measurement in 56 pA units
- Communication by CANopen protocol
- Single RJ45 cable for CAN communication and supply
 - Can be daisy chained
- Cast aluminium box 112 x 60 mm, 31 mm high
 - SHV out

CANopen communication to multiple mini HVs

Single RJ45 cable to supply everything

Block diagram of single mini HV unit

- Chop frequency may be modified
- Trip by CAN logic processor, depending on voltage ramp
 - E.g. Trip 5 nA @ ramp 1V/s
- Voltage feedback from dummy diode circuit

Cockcroft-Walton circuit

- In principle no feedback at end of diode chain, only from first diode circuit
- Advantages
 - Accurate measurement of output current in nA region
 - Sensitive trip possible
- Disadvantage
 - Regulation less direct, depending on diode characteristics
- Output capacitance ~ 5 nF

Fast ramping possible

- Measured rise time without slope adjustment ~ 100 ms (from 0 to -480V)
 - No overshoot

Saved: 14 APR 2010 13:59:12

Simulation of smooth ramping

- Linear rise adjustable in steps of -73.6 mV/s
- Followed by exponential approach to target voltage
- Slope parameters controlled by CANopen commands
 - Linear slope
 - Start exponential part

CANopen Object Dictionary prepared

MicroHV software

v0.1 3-Feb-2009

MicroHV

CANopen application software for the '*Micro' High-Voltage Powersupply Controller*

> Henk Boterenbrood NIKHEF, Amsterdam 3 February 2010

> > Version 0.1

Manufacturer-Specific Profile Area (continued)							
Index	Sub	Name	Data/	Attr	Default	Comment	
(hex)	Index		Object				

2500		DAC configuration	Record			
	0	Number of entries	U8	RO	2	
*	1	SPI SCLK signal high period (opto-coupler delay)	U8	RW	10	in μs , 10 \leq value \leq 255
*	2	Ramp speed	U16	RW	0	If != 0 ramp speed is taken into account; in DAC-counts per sec
	3	Ramping pause/continue	Bool	RW		Ramping in progress or not (read), pause/continue ramping (write)
*	4	Percentage to switch from linear to exponential ramp- ing	U8	RW	90	The percentage of the requested DAC end-value at which up- ramping (not down) switches from linear to exponential, taking the set ramp speed into account

2600		PWM configuration	Record			PWM waveforms on AT90CAN64 outputs OC3B/C
	0	Number of entries	U8	RO	4	
*	1	Start at power-up	Bool	RW	0	Start at power-up or not
*	2	Frequency	U8	RW	3	1 = 25KHz, 2 = 50KHz, 3 = 100KHz, 4 = 200KHz
*	3	Gap size	U8	RW	1	Gap between waveforms positive pulses, in units of system clock period (4 MHz, i.e. 250 ns)
	4	PWM stop/start	Bool	RW	0	PWM running or not (read), start or stop the PWM (write)

Test results of two prototypes of mini HV version 1

Note: version 2 (in development) may have different performance

Output voltage vs DAC value

Output voltage vs applied DAC value

DAC Ic

Detail at low voltage

Output voltage vs applied DAC value

Current measurement

• Unit 1.2

Measured output current vs actual output current f = 606.8 -18.18*x

Voltage regulation

Output voltage vs output current

- Output impedance ~ 10
 MΩ for currents > 200 nA
- ~ 10V higher output voltage for currents in few nA range compared to 200 nA
 - Using two different types of diodes
 - => Mismatch of diode characteristics

HV 22/

- => output impedance zero for currents > 150 nA
- = ~ 2V higher output voltage for currents in few nA range
- Remaining inaccuracy might be partly cured
 - by adding bleeder resistors like 50 GΩ per cascade stage
 - Making correction in CAN processor
- Alternative: voltage feedback
 - But resistor may be less stable
 - Regulation pretty slow

Assembly in cast aluminium box

17

Planned time schedule mini HV unit

• Version 1 ready

- 2 prototypes (-500 and -1000V
- Not suited for series production

• Version 2 in development

- Schematic to be finished
- Layout PCB to be made
- Production and assembly PCB
- Assembly HV box
- Starting with producing (5) prototypes
 - Planned to be ready mid October
 - Production setup for 25 units

Conclusions

• Global design for mini HV now settled

• But still quite some detailing to be done

Stabilize voltage

- By individual calibration curve
- By using voltage feedback from bleeder resistor

• Could start in autumn with some series production (~20 units)

- We might consider also more outputs
 - Like for GEM grids, omitting resistor chain
 - > bit larger housing

Plan starting producing series of 20 in October 2010