

Photoelectron extraction efficiency from CsI photochatodes in noble gases (Ar, Xe) up to 10 bars

D.S. Covita, C.D.R. Azevedo, C.C. Caldas and J.F.C.A. Veloso

I3N, Physics Department – University of Aveiro

Motivation

Csl are widely used as photocathodes

in radiation detectors based in scintillation photons from noble gases

- Medical imaging
- Particle physics
- Radiation detection in general
 - Dual phase detectors (Dark matter experiments)
 - Micro-pattern gas detectors

Applications for hard X-rays may require high pressure

 \Box Simulations do exist on the photoelectron extraction efficiency from CsI into noble gases and mixtures with organics as function of *E*/*p*

□ No experimental data is available beyond 1 atm!

□ The available results fairly agree

e.g. discrepancies of ~20% are seen at E/p=1Vcm⁻¹Torr⁻¹ for (Ar, Xe)

Experimental setup and method

Experimental setup and method

24-27th May 2010 Freiburg, Germany

5th RD51 Collaboration Meeting

Experimental setup and method

- 1) Pump the system bellow 10⁻⁵ mbar
- 2) Measure the photocurrent vs E/p
- 3) Fill the system with high purity Ar/Xe
- 4) Re-measure the photocurrent vs E/p
- 5) Repeat for different pressures up to 10 bar
- 6) Complete 3 series of measurements (1...10 bar)
- 7) Take the average of I(E/p) to obtain the photoelectron extraction

efficiency curve

theoria po

i**ro Ener**theoria poies

Results in Xe

✓ The extraction efficiency is confirmed to be independent from the Xe pressure (up to 10 bar)

Results in Xe

- ✓ The extraction efficiency is confirmed to be independent from the Xe pressure (up to 10 bar)
- ✓ Still some discrepancies from the simulation results

Results in Ar

24-27th May 2010 Freiburg, Germany

5th RD51 Collaboration Meeting

theoria noiesis nra

Results in Ar

24-27th May 2010 Freiburg, Germany

5th RD51 Collaboration Meeting

theoria noiesis nra

Results in Ar

24-27th May 2010 Freiburg, Germany

5th RD51 Collaboration Meeting

theoria noiesis pro

Results in Ar

24-27th May 2010 Freiburg, Germany

5th RD51 Collaboration Meeting

Results in Ar

24-27th May 2010 Freiburg, Germany

5th RD51 Collaboration Meeting

theoria noiecie nra

Results in Ar

24-27th May 2010 Freiburg, Germany

5th RD51 Collaboration Meeting

theoria noiesis pr

Results in Ar

24-27th May 2010 Freiburg, Germany

5th RD51 Collaboration Meeting

theoria noiesis n

Results in Ar

- > May aging affect the photoelectron extraction efficiency !??
- > May the effect be much stronger at lower pressures !??

Conclusions and future work

Conclusions

✓ The photoelectron extraction efficiency was confirmed to be pressure independent within 2% in Xenon and Argon

✓ So far, the measurements indicate that aging may affect the photoelectron extraction efficiency

Future

- Systematic aging studies in Argon and Xenon
- \succ Extend the studies to Ne, Kr and mixtures with organics (e.g. CH₄ and CF₄)

Thanks for your attention

Quartz Wind

Kapton

24-27th May 2010 Freiburg, Germany

5th RD51 Collaboration Meeting

