Micromegas DHCAL project $48 \times 32 \text{ cm}^2$ Active Sensor Units 1 m^2 prototype

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Assembly of the first 1 m² Micromegas with digital readout for a sDHCAL

Maximilien Chefdeville

I APP

May 24th 2010

8 × 32 cm² Active Sensor Uni

1 m² prototyp

Conclusion and future plans

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

Micromegas DHCAL project Concept, performance, m² design

 $48 \times 32 \text{ cm}^2$ Active Sensor Units Description and characterisation

1 m² prototype Assembly

Conclusion and future plans

1 m² prototype

Conclusion and future plans

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Micromegas DHCAL project

 Calorimetry based on PFA at future linear colliders: granularity more important than resolution
 → digital readout of 1 cm² cells

48 \times 32 cm² Active Sensor Units 000000000000

1 m² prototype

Conclusion and future plans

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Micromegas DHCAL project

- Calorimetry based on PFA at future linear colliders: granularity more important than resolution
 → digital readout of 1 cm² cells
- Loss of linearity at high energy (\geq 100 GeV/c) \rightarrow semi-digital readout

 $48 \times 32 \text{ cm}^2$ Active Sensor Units 00000000000

1 m² prototype

Conclusion and future plans

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Micromegas DHCAL project

- Calorimetry based on PFA at future linear colliders: granularity more important than resolution
 → digital readout of 1 cm² cells
- Loss of linearity at high energy (\geq 100 GeV/c) \rightarrow semi-digital readout
- Large area with gaseous detectors \rightarrow RPC, GEM, Micromegas

Outline

8 × 32 cm² Active Sensor Unit

1 m² prototype

Conclusion and future plans

э

Micromegas DHCAL project

Pros

Proportionality

Low working voltage (\leq 500 V) Standard mix (Ar, iC₄H₁₀, CO₂) Industrial production (Bulk)

Cons

Sparks (rate, gain dependent) Small charges (\approx 25 fC for MIPs)

R&D efforts for the construction of a physics and technological sDHCAL prototype of 1 m³ \rightarrow 40 planes of 1 m² each (20 mm SS + 8 mm detector)

0000

Micromegas DHCAL project 48 × 32 cm² Active Sensor Units 1 m² prototype Conclusion and future plans.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Tests with MIPs carried out at SPS/H2 in 2008
 - 97 % efficiency at 1.5 fC threshold
 - multiplicity below 1.12 (1.5 fC)
 - uniformity better than 1 % over 100 cm²

0000

Micromegas DHCAL project 48 × 32 cm² Active Sensor Units 1 m² prototype Conclusion and future plans

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Tests with MIPs carried out at SPS/H2 in 2008
 - 97 % efficiency at 1.5 fC threshold
 - multiplicity below 1.12 (1.5 fC)
 - uniformity better than 1 % over 100 cm²
- Behaviour in 2 GeV/c e⁺ showers at PS/T10 in 2009
 - good agreement with GEANT4 predictions

0000

Micromegas DHCAL project 48 × 32 cm² Active Sensor Units 1 m² prototype Conclusion and future plans

- Tests with MIPs carried out at SPS/H2 in 2008
 - 97 % efficiency at 1.5 fC threshold
 - multiplicity below 1.12 (1.5 fC)
 - uniformity better than 1 % over 100 cm²
- Behaviour in 2 GeV/c e⁺ showers at PS/T10 in 2009
 - good agreement with GEANT4 predictions
- (P,T) dependence studied at LAPP with ⁵⁵Fe source
 - 2.36 % K/mbar

Micromegas DHCAL project 48 × 32 cm² Active Sensor Units 1 m² prototype Conclusion and future plans

- Tests with MIPs carried out at SPS/H2 in 2008
 - 97 % efficiency at 1.5 fC threshold
 - multiplicity below 1.12 (1.5 fC)
 - uniformity better than 1 % over 100 cm²
- Behaviour in 2 GeV/c e⁺ showers at PS/T10 in 2009
 - good agreement with GEANT4 predictions
- (P,T) dependence studied at LAPP with ⁵⁵Fe source
 - 2.36 % K/mbar
- Most results available in 2009 JINST 4 P11023

Design of the 1 m^2 prototype

- 6 Active Sensor Units (ASU) of 32×48 cm²
- 24 ASIC with 64 channels (per ASU)
- 12 mm thick including 4 mm stainless steel (covers)
- Active area of $9216/10^4 \approx 93 \ \%$
- Assembly procedure validated with mechanical prototype

Micromegas DHCAL project $48 \times 32 \text{ cm}^2$ Active Sensor Units 1 m^2 prototype

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ASU with HARDROC2

- HARDROC2 (64 channels) circuitry:
 - current preamplifier with adjustable gain (0–2)
 - slow/fast shaper for analog/digital readout
 - 3 discriminators with adjustable threshold (individual gains but 3 common threshold)
 - 200 ns timestamping of hits
 - 128 event depth memory
 - power pulsing capability (not used so far)

ASU with HARDROC2

- HARDROC2 (64 channels) circuitry:
 - current preamplifier with adjustable gain (0–2)
 - slow/fast shaper for analog/digital readout
 - 3 discriminators with adjustable threshold (individual gains but 3 common threshold)
 - 200 ns timestamping of hits
 - 128 event depth memory
 - power pulsing capability (not used so far)
- Fast shaper time constant (20 ns) too short w.r.t. Micromegas signals (150 ns)
 - \rightarrow poor efficiency

 \rightarrow work on new chip with LAL/Omega on-going (MICROROC)

1 m² prototype

Conclusion and future plans

ASU characterisation

- Electronic test
 - measure noise level
 - identify noisy channels
 - measure preamp gain
 - achieve lowest threshold

- Test in a gas chamber
 - ⁵⁵Fe quanta
 - study chip parameters
 - effect of drift and amplification field

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Micromegas DHCAL project 48 x 32 cm² Active Sensor Units 1 m² prototype Conclusion and future plans

Preamplifier gain measurements

- Measure Scurves for different input charges (0,20,100,200 fC) Agilent pulse generator and attenuator
- Calculate slope of inflexion point VS input charge variations

Gain equalization

- Apply correction factor to preamplifier gain g
 - simply calculated as \overline{g}/g_i
 - check equalization with charge injection:
 - Chip 18: 3.2 $\% \rightarrow 0.8$ % Chip 24: 4.0 % $\rightarrow 1.2$ %

 Uniform response of HCAL will be important however, most important with HR2 is to achive low threshold

Pedestal alignment

- How to reach the minimum charge threshold?
 - Ideal case: all pedestal Scurves super-imposed \rightarrow threshold 5 σ above the inflexion point μ
 - Unfortunately: at same preamp gain, dispersion of μ_i and σ_i
 - But: μ_i and σ_i depends linearly on preamp gain
 - \rightarrow adjust gains g_i to minimize spread of μ_i or $(\mu_i+5\sigma_i)$

Micromegas DHCAL project 48 × 32 cm² Active Sensor Units

Pedestal alignment

- How to reach the minimum charge threshold?
 - Ideal case: all pedestal Scurves super-imposed \rightarrow threshold 5 σ above the inflexion point μ
 - Unfortunately: at same preamp gain, dispersion of μ_i and σ_i
 - But: μ_i and σ_i depends linearly on preamp gain
 - \rightarrow adjust gains g_i to minimize spread of μ_i or $(\mu_i+5\sigma_i)$

1 m² prototype

-

Conclusion and future plans

Pedestal alignment

- How to reach the minimum charge threshold?
 - Ideal case: all pedestal Scurves super-imposed \rightarrow threshold 5 σ above the inflexion point μ
 - Unfortunately: at same preamp gain, dispersion of μ_i and σ_i
 - But: μ_i and σ_i depends linearly on preamp gain
 - \rightarrow adjust gains $g_{\rm i}$ to minimize spread of $\mu_{\rm i}$ or $(\mu_{\rm i}{+}5\sigma_{\rm i})$

Pedestal alignment

- How to reach the minimum charge threshold?
 - Ideal case: all pedestal Scurves super-imposed \rightarrow threshold 5 σ above the inflexion point μ
 - Unfortunately: at same preamp gain, dispersion of μ_i and σ_i
 - But: μ_i and σ_i depends linearly on preamp gain
 - \rightarrow adjust gains g_i to minimize spread of μ_i or $(\mu_i + 5\sigma_i)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $48 \times 32 \text{ cm}^2$ Active Sensor Units 1 m^2 prototype Conclusion and future plans

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

⁵⁵Fe tests in gas box

- Gas test box
 - Volume of 8 L (3 cm drift gap), perforated cover for testing individual channels
 - 2 guard electrodes, ⁵⁵Fe X-rays transparent cathode

 $48 \times 32 \text{ cm}^2$ Active Sensor Units

1 m² prototyp 000000 Conclusion and future plans

⁵⁵Fe tests in gas box

- Gas test box
 - Volume of 8 L (3 cm drift gap), perforated cover for testing individual channels
 - 2 guard electrodes, ⁵⁵Fe X-rays transparent cathode
- ⁵⁵Fe quanta yields on average 230 electrons
 - Longitudinal diffusion gives $\sigma_t = D_L \sqrt{z} / v_d = 13 \sqrt{z}$ ns Full signal takes more time than shaping time (≈ 20 ns) \rightarrow should see only photons converting close to the mesh

 $48 \times 32 \text{ cm}^2$ Active Sensor Units

1 m² prototyp

Conclusion and future plans

⁵⁵Fe tests in gas box

- Gas test box
 - Volume of 8 L (3 cm drift gap), perforated cover for testing individual channels
 - 2 guard electrodes, ⁵⁵Fe X-rays transparent cathode
- ⁵⁵Fe quanta yields on average 230 electrons
 - Longitudinal diffusion gives $\sigma_t = D_L \sqrt{z} / v_d = 13 \sqrt{z}$ ns Full signal takes more time than shaping time (≈ 20 ns) \rightarrow should see only photons converting close to the mesh
- Method:
 - External signal triggers the readout of the detector (30 Hz)
 - · Count the number of hits recorded on the tested pad

 $48 \times 32 \text{ cm}^2$ Active Sensor Units

1 m² prototyp

Conclusion and future plans

Preamplifier gain

- For a different preamp gains (0.5,1,1.5)
 - · Decrease threshold from high value to noise level
 - Signal to noise ratio similar
 - \rightarrow same number of hits

 $48 \times 32 \text{ cm}^2$ Active Sensor Units

1 m² prototyp 000000 Conclusion and future plans

Drift field

- Combination of three effects:
 - · Collection efficiency drops above certain field
 - Drift velocity has a local maximum, 4.2 cm/ μ s at 250 V/cm
 - Long. diffusion coefficient drops: 450–200 $\mu m/\sqrt{cm}$ at 100–1000 V/cm

• Last two effects govern time spread of the e^- at the mesh

Micromegas DHCAL project 48 × 32 cm² Active Sensor Units 00000000000

Amplification field

- At higher amplification field:
 - Total charge induced on pad increases ($\sim \exp(\alpha d)$)
 - But fraction $Q_{\rm electrons}/Q_{\rm ions}$ drops ($\sim 1/\alpha d$)
- Net effect is an increase of the number of detected photons
- Plateau reached at 410 V at which the gas gain is about 10^4

48 × 32 cm² Active Sensor Unit

1 m² prototype •00000

Conclusion and future plans

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assembly of 1 m² prototype

- ASU in hands:
 - 4 equipped with HR2 (chip configuration problem)
 - 1 equipped with HR2b (bug in the chip fixed)

1 m² prototype 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assembly of 1 m^2 prototype

- ASU in hands:
 - 4 equipped with HR2 (chip configuration problem)
 - 1 equipped with HR2b (bug in the chip fixed)
- Prior at assembly:
 - ASU "trained" under high voltage (800 V in air)
 - electronic test (pedestals, calibration ...)

 1 m^2 prototype

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assembly of 1 m² prototype

- ASU in hands:
 - 4 equipped with HR2 (chip configuration problem)
 - 1 equipped with HR2b (bug in the chip fixed)
- Prior at assembly:
 - ASU "trained" under high voltage (800 V in air)
 - electronic test (pedestals, calibration ...)
- Assembly started Monday last week, ready for test on Saturday

1 m² prototype

Conclusion and future plans

<ロ> (四) (四) (三) (三) (三) (三)

ASU glueing

- HV and electronics tests
- Glueing of ASU slab on a vetronite mask

1 m² prototype

Conclusion and future plans

ASU glueing

- HV and electronics tests
- Glueing of ASU slab on a vetronite mask

1 m² prototype

Conclusion and future plans

Spacers and frame glueing

- Spacers will define the 3 mm gas gap
- Frame insure gas distribution and tighness

48 × 32 cm² Active Sensor Uni 00000000000 1 m² prototype

Conclusion and future plans

Cathode and cover glueing

- Cathode is a copper foil glued on stainless steel plate
- Cover area larger than 1 m² to support the readout electronics

48 × 32 cm² Active Sensor Unit

1 m² prototype

Conclusion and future plans

After assembly

- Connection failure of one flexible cable
 → 1 row of chip over 12 is not responding, rest is fine
- Total thickness is 12 mm which includes 4 mm of steel
 → effective thickess of 8 mm complies with ILC goal
 could be reduced to 6 mm

Conclusion and future plans

Conclusion and future plans

- About to complete an important milestone of the projet: fabrication and characterisation of the first 1 m² Micromegas prototype with embedded digital electronics
- Focus in the 2 coming weeks on beam test at SPS/H4 starting on June 10^{th} Comics test at LAPP till then
- Due to short shaping of HR2, poor efficiency expected \rightarrow work on a new chip is on-going in collaboration with LAL/Omega
- New chips available before the end of the year \rightarrow more 1 m² prototype not before next year