

Gossip/GridPix testbeam experiment in SPS area T4-134 August 12 – 23, 2010

Maarten van Dijk, Martin Fransen, Harry van der Graaf, <u>Fred Hartjes</u>, Wilco Koppert, Sjoerd Nauta

Aim of the beam test

Characterisation of Gossip detectors

- Gossip detectors are intended for tracking in the hottest parts (1 GHz/cm²) at the sLHC
- TimePix chip (55 x 55 μm)
- Gas multiplication InGrid
- Each pixel sensitive for single e⁻
- Reduced drift gap (~1 mm)

Parameters to be measured

- Position resolution
- Angular dependence
- Track detection efficiency
- Primary gas to be used: DME/CO2 50/50
 - Very low diffusion
 - Good primary ionisation

2

Properties of CO₂/DME 50/50

• "Cool gas"

- $V_d \approx 10 \ \mu m/ns @ 2 \ kV/cm$
- Very low diffusion: $\sim 70 \,\mu\text{m}/\sqrt{\text{cm}}$
- Ref:
 - Ar/isobutane 80/20: 250 μm/) cm
- We finally intend ~6 kV/cm
 - $V_d \approx 50 \ \mu m/ns$
 - Diffusion $\approx 100 \ \mu m/\sqrt{cm}$
- High grid voltage needed to get sufficient gas gain
 - 400 V => 550 V
 - Discharges at edges (bond wires)
 - New detectors passivated by Gloptop

Diffusion coefficients vs E

Gas: CO₂ 50%, DME 50%, T=300 K, p=1 atm

Illustration of DME/CO₂ properties

Ar/iC₄H₁₀ 80/20 (June 2009 testbeam)

CO₂/DME 50/50

4

Primary ionisation
Drift velocity vs field
Diffusion
Cluster density for MIPs
Possible electron attachment in DME/CO₂

Fundamental properties of ionization and charge transport

RD51 workshop Freiburg, May 25, 201

Fred Hartjes

Expected performance of 1-mm Gossip

- Position resolution: 15 -20 µm expected from simulation (angular dependent)
 - => RD51 telescope cannot be used
 - For the time being a telescope from other Gossips will be used as a reference

of pixels hit per event for DICE

Pile-up

• One pixel is hit by more than one electron

- Strongly angular dependent
- More prominent for DME/CO₂
 - Low diffusion

=> we have to do a lot of measurements at many different angles

Detector set-up

- Three 1.0-mm Gossips + one
 19.3-mm Gossip (DICE)
- 2 miniature scintillators for triggering
- 1 optical bench 1 m long
 - 4 translation stages

4 accurate rotary stages

• To be fixed as a whole onto a CERN movable table

How much material do we put in the testbeam?

• Gossip test

• Detectors: 4 Gossips, TimePix based, on PCB

• Material budget

- glass fibre epoxy with copper layers, 4 x 1.6 mm
- silicon chips 4 x 0.7 mm
- **Total 4 detectors 10.1% X/X**₀
- 2 trigger counters 5 mm thick
 => 2.0% X/X₀

=> total material budget 12.1% X/X₀

Services: self supporting

- Grid voltage
 - ISEG supplies (2 units of 2 CH each)
 - Remote control via RS232 by LabView on dedicated DCS PC
- Drift field by 4 ch NIM HV unit (Wenzel)
 - Remotely controlled by NI DAQ unit
- Triggering
 - Dedicated very fast trigger box from scintillator coincidence
 - NIM crate with trigger logic
- Low voltage: standard lab supplies

DAQ

- by MUROS unit using Pixelman software (MediPix)
- Using dedicated DAQ PC

Environmental

Recording temperature and atmospheric pressure in HV log file

RD51 workshop Freiburg, May 25, 2010

Gas: also self supporting

- Gas system completely in beam zone including gas bottle
 - Using single premixed light weight SS bottle under low pressure < 20 bar</p>
 - \Rightarrow 42 g H₂ eq for DME/CO₂ 50/50 (10 bar)
 - => 29 g H₂ eq for Ar/iC₄H₁₀ mixtures (\leq 20 bar)
 - To be approved by CERN FGSO Very well below the **400 g** limit of CERN Safety Class 1
 - Risk of small local flash fire or explosion
 - Leak check by measuring gas flow deficit
- => many advantages
 - No gas mixing system
 - No long pipes
 - => rapid and easy installation
- Required gas flow ruled by inflow of oxygen by diffusion
 - 3.5 l/h required getting O₂ level < 30 ppM

Required for 19.3-mm drift Gossip

■ 1-mm Gossips no problem (< 500 ppM)

=> we will using this flow only during data taking to save gas

Diagram Nikhef gas filling system

Gas from premixed Nikhef bottles

Filling system now well operational

Each bottle carries two self-sticky labels

- Label with serial#
- Label (automatically printed) with
 - mixture identification
 - Filling pressure (max 20 bar gauge)
 - Preparation date
- For each bottle a log file is automatically stored containing mixing data, place of use and name of user
- Bottles for external use will be formally certified by Nikhef director
- System will receive CE classification

Fred Hartjes

Block diagram Gossip beam test

Completely stand-alone system including DAQ and gas

- Only beam, 230 VAC and movable X_Y table needed
- Computer control from barrack using Remote Desktop
- Between barrack and experimental area: 2 Ethernet cables + 2-3 BNC cables

14

Installation schedule for August 12 testbeam

MD period July 26 – 30

- Laying Ethernet and BNC cables between testbeam zone and barrack
- Make design for a support block on the movable table for mounting the optical bench with detectors

August 12 (start testbeam period)

- In testbeam area
 - Mounting optical bench with detectors onto movable table
 - Align detectors to beam
 - Install 2 PCs, DAQ box, trigger logic incl. NIM crate and gas system
- In barrack
 - Install 2 PCs, some NIM logic

Measuring program in August testbeam

• Gossip characterisation

- Single electron efficiency vs Vgrid (plateau curve)
- Position resolution
 - Many different angles
- Track detection efficiency
 - Low drift field, high gain

• DME/CO₂ parameters

- Using parallel tracks (Gossips at ~ 0 deg, DICE at 90 deg)
- Drift velocity vs E field
- Diffusion/sqrt(cm) vs E
- Electron absorption
- Cluster density
- Ionisation density

Measure drift time spectrum at various gains

• Time slewing TimePix