Index	Stabilization	High pressure	Conclusions	Back-up

New results of micromegas (microbulk) detectors

F.J. Iguaz

on behalf of the collaboration IRFU-CEA/Saclay: E. Ferrer-Ribas, A. Giganon, I. Giomataris and T. Papaevangelou University of Zaragoza: T. Dafni, J. Galán, J.A. Garcia, I. Irastorza and A. Tomás

RD51 collaboration meeting - Freiburg - 25th May 2010

Index	Stabilization	High pressure	Conclusions	Back-up
Index				

2 Micromegas in pure gases at high pressure

3 Conclusions

Signal stabilization time for different micromegas readouts

- We have checked the time needed for microbulk readouts to stabilize after voltages have been switched on. Observations in GEMs: some hours.
- Four different micromegas readouts studied:
 - Standard (classical) microbulk (M2).
 - Standard microbulk after being etched (M11).
 - Microbulk with pillars.
 - CAST detector, made with standard microbulk technology and with a 2D anode plane.

See A. Giganon's talk for more details!!

• Different stabilization times and amplitude variations observed, which can be related to the quantity of kapton.

Index	Stabilization	High pressure	Conclusions	Back-up
Micromega Readouts descri	as stabilization	time		

Standard micromegas

Micromegas with pillars

Gap: 50 μ m; holes: 40 μ m; pitch: 100 μ m.

Areas without holes & full etching underneath normal holes.

IndexStabilizationHigh pressureConclusionsBack-upSignal stabilization time

Results

- CAST detector needs 30-40 minutes to stabilize. Kapton?
- A decrease in the amplitude of 5 and 9 % observed.

IndexStabilizationHigh pressureConclusionsBack-upSignal stabilization time

Results

- Standard (and etched) microbulk need 10 mintues to stabilize.
- $\bullet\,$ Signal amplitude decreases a 4 % (standard) and 1.5 % (etched).

IndexStabilizationHigh pressureConclusionsBack-upSignal stabilization time

Results

- Microbulk with pillars show no amplitude decrease.
- They have the less quantity of kapton of readout studied.

Micromegas readouts at high energy and pressure

Index	Stabilization	High pressure	Conclusions	Back-up
Tests with	micromegas r	eadouts		

Collaboration work: IRFU/CEA-Saclay & University of Zaragoza.

Characterization of microbulks (25 & 50 um gap) with an $^{241}{\rm Am}$ source (which emits α 5.5 MeV) at high pressure gases.

- Gain vs amplification field and maximum gain.
- Electron transmission vs ratio of drift and amplification fields.
- Energy resolution vs drift field.

Gases and pressures studied:

- IRFU/CEA-Saclay: Ar-iC₄H₁₀ mixtures, Ar and Xe up to 5 bar. Results published in the article: T. Dafni *et al.*, *Nucl. Inst. Meth. A* 608 (2009) 259-266.
- Zaragoza: same gases up to 10 bar. Results to be published soon!!!

Focus on properties in pure argon.

Index	Stabilization	High pressure	Conclusions	Back-up
Micromega Readouts charac	S terization: (Gain and electron transmission		

- Presence of a plateau at low drift fields: all electrons cross the mesh.
- Exponential dependence of the gain with the amplification field.
- Energy resolution in Ar + 5% iC_4H_{10} at 1 bar: 11 % FWHM.

Stabilization

High pressure

Conclusions

Back-up

The HELLAZ high pressure TPC Setup description

Sketch of the setup

- Aluminium vessel.
- Electric and gas feedthoughs.
- Complete gas system.

Upper cap

Lower cap

IndexStabilizationHigh pressureConclusionsBack-upArgon-isobutane measurements
Gain and electron transmission

- Electron transmission curve compatible with the standard one.
- Maximum gain reached: $> 7 \times 10^2$ in all pressures.

- Energy resolution: 2 and 2.3 % FWHM at 2 % and 5 % iC₄H₁₀.
- Asymmetric shape of the peak due to incomplete charge collection.
- Estimation 0.7 and 0.9 % FWHM at 2 % and 5 % iC₄H₁₀.

Index	Stabilization	High pressure	Conclusions	Back-up
Pure argon	measurements	5		
Electron transmi	ssion curve			

- 50 μ m gap: 5 times shorter plateau than in Ar-Iso mixtures.
- 25 μ m gap: a strange plateau 2.5 times shorter.

- At < 3 bar, maximum gain not reached (> 7×10^2).
- Maximum gain lowers with pressure $(1.5 \times 10^2 \text{ at 6 bar})$.

- 3 times lower maximum gain than for 50 μ m readouts.
- Maximum gain also lowers with pressure but more slowly.

Index	Stabilization	High pressure	Conclusions	Back-up
Gain in p Rose & Korff	oure argon			

• The gain of a Micromegas detector can be explained by the Rose & Korff model of the avalanche multiplication:

$$ln(G) = \frac{d}{\lambda_e} \exp\left(\frac{I_e}{\lambda_e \ E_{amp}}\right)$$

where d is the gap distance, λ_e is the electron mean free path in the gas, I_e is the threshold energy for ionization and E_{amp} is the amplificaction field.

- We have observed a dependence of I_e and λ_e with pressure. Real gas properties or model divergences?
- Results compared with Ar-Iso measurements in Zaragoza's HPTPC with a readout of 50 μ m-gap.

IndexStabilizationHigh pressureConclusionsBack-upGain in pure argon I_e versus pressure in pure argon

- Linear increase of I_e with pressure: $14.45 \pm 3.55(P-1)$.
- Similar dependence for Ar-Iso mixtures but with lower slope. Note that I_e is 10.8 eV for Iso and 15.8 eV for Ar at 1 bar.

- Constant values: 1.3 μm (50 $\mu m)$ and 1 μm (25 $\mu m).$
- Value for the 50 μ m-gap readout similar to Ar+0.5%iC₄H₁₀.
- At higher quantities of isobutane, λ_e decrease with pressure.

The energy resolution values obtained for pure gases in this setup are not so good as in argon-isobutane mixtures because

- it has no field cage to make drift field really uniform.
- gas quality is not so good (vacuum $\approx 5 \times 10^{-4}$ mbar and outgassing $\approx 10^{-4}$ mbar l/sec) due to inner components and aluminium TPC.

The experience acquired in this setup motivated the building of a completely new setup in Zaragoza.

Stabilization High pressure A new high pressure TPC in Zaragoza Setup description

 TPC of stainless steel instead of aluminium.

Index

- Orift structure to make drift field uniform.
- Low-outgassing plastics used: PEEK and DELRIN.

The TPC vessel

Conclusions

Drift structure

Readout support

Back-up

High pressure

Conclusions

Back-up

A new high pressure TPC in Zaragoza Setup description

Vacuum and gas system

- Turbomolecular pump.
- Bake-out system (110°C).
- Gas recirculation through purification filters.

Recirculation pump

Purification filters

- Values around 3 % and 4 % FWHM between 3 and 7 bar.
- At low pressures: geometrical effects. At high: attachment effects.
- At low drift fields: attachment.

Improvement of values published: 3.4 (2 bar), 2.7 (3 bar), 2.5 (4 bar) and 3.2 % FWHM (5 bar).

- Estimated energy resolution in absence of remaining effects (a bit of attachment, diffusion, recombination) selecting risetimes.
- Energy resolution is better for events with longer risetime.

- A value of 1.8 % FWHM obtained at 4 bar.
- Micromegas technology can be applied in a Xenon TPC for a double beta decay experiment!!!!!

Stabilization

Conclusions

Index	Stabilization	High pressure	Conclusions	Back-up
Conclusior	IS			

- Observed the time needed to stabilize and the amplitude variation for different microbulk detectors.
- Characterized microbulk readouts in pure argon: gain vs amplification field, electron transmission and energy resolution.
- A shorter plateau observed in electron transmission curves than for argon-isobutane mixtures.
- Gain curves have been fitted to Rose & Korff model: constant value of λ_e and linear dependence of I_e with pressure.
- Energy resolution values between 3 and 4 % FWHM.
- Pure xenon at 4 bar: measured energy resolution of 2.8 % FWHM. Estimated a value of 1.8 % FWHM. Micromegas can be used in a double beta experiment.

Stabilization

Back-up slides.

- Good match between data and theory.
- Differences can be explained by drift field uniformities.

F.J. Iguaz New results of micromegas detectors

Index
Stabilization
High pressure
Conclusions
Back-up

A new high pressure TPC in Zaragoza
Dependence of the amplitude with the risetime
Enderson
Enderso

- Vacuum: 10^{-5} mbar. Outgassing: 10^{-5} mbar l /s.
- No correlation in xenon for pressures up to 4 bar.
- Attachment effects cannot be avoided at 5 bar.