

Feedback mechanisms

Özkan ŞAHİN Uludağ University Physics Department Bursa -TURKEY

Photon feedback

- ★ Excited states $(A^*) \Rightarrow$ radiative decay $(A^* \rightarrow A + \gamma)$,
- Photons \Rightarrow photo-electrons (from cathode and in gas itself),
- Secondary, delayed avalanches \Rightarrow over exponential increases at high gains:
 - ♦ $G \Rightarrow$ average avalanche size without feedback,
 - ↔ β ⇒ the number of secondary avalanches started by one avalanche electron,
 - ♦ electrons: 1th step $\Rightarrow \beta G$, 2nd step $\Rightarrow \beta G^2$, 3th step $\Rightarrow \beta G^3$, ...
 - * Summing over each step:

$$G + \beta G^2 + \beta^2 G^3 + \ldots = G/(1 - \beta G)$$

Examples

Ar + quencher

Exp. data: P.C. Agrawal et al., *Study of argon-based Penning gas mixtures for use in proportional counters*, *Nucl. Instrum. Meth.* A 277 (1989) 557.
Plots: Ö. Şahin, İ. Tapan, E. N. Özmutlu and R. Veenhof, *Penning transfer in argon-based gas mixtures*, <u>2010 JINST 5 P05002</u>.

Energy of photons

* $3p^{5}4s$

- ★ Ar*(³P₀), Ar*(³P₂) 11.55 eV, 11.72 eV \Rightarrow Metastables
 - $\tau \Rightarrow$ lifetime of seconds
- * $Ar^{*}({}^{3}P_{1}), Ar^{*}({}^{3}P_{3})$ 11.62 eV, 11.83 eV \Rightarrow UV photons $\tau \approx 8.6$ 0.4 ns, $\tau \approx 21$ 2 ns
- * $3p^54p$
 - ✤ predominantly decays ⇒ $3p^54s$ red or infrared light (≈ 2 eV)
 - $\tau \Rightarrow 21.7 40.5 \text{ ns}$
- * $3p^53d$
 - threshold energy of 13.85 eV

 $\tau \approx 50 \text{ ns}$

- higher levels
 - less frequently excited in avalanches
 - $\tau \Rightarrow 100 300 \text{ ns}$

Production rates of excited states

Ar 99 % - C_2H_2 1% mixture, at 1 atm

A simple model of β

 $\beta = n_{\gamma} \exp(-d/\lambda)$

- n_γ : number of photons emitted per avalanche electron,
 Penning transfer probabilities,
 Rates of excited states (Magboltz)
- d : avalanche sizes,
 - Townsend coefficients (Magboltz)
- * λ : mean free path of photons
 - Absorption cross sections (literature)

Number of photons (n_{γ})

$$n_{\gamma} = \frac{\text{total number of photons}}{\text{total number of electrons}}$$

$$n_{\gamma} = \frac{\exp \int_{\text{tube}}^{\text{anode}} dr \,\alpha(E(r)) \frac{\sum v_i^{\text{ion}}\left(E(r)\right) + \sum k_i \, v_i^{\text{exc}_{all}}\left(E(r)\right)}{\sum v_i^{\text{ion}}\left(E(r)\right)} \left(r \, \alpha(E(r)) \frac{\sum (1-k_i) \, v_i^{\text{exc}_{rad}}\left(E(r)\right)}{\sum v_i^{\text{ion}}\left(E(r)\right)} \right)}{\exp \int_{\text{tube}}^{\text{anode}} dr \,\alpha(E(r)) \frac{\sum v_i^{\text{ion}}\left(E(r)\right) + \sum k_i \, v_i^{\text{exc}_{all}}\left(E(r)\right)}{\sum v_i^{\text{ion}}\left(E(r)\right)}}$$

* α , v_i : gas properties (pressure, temperature ...)

* k_i transfer probabilities:

 $A^* + B \rightarrow A + B^+ + e^-$: collisional ionisation,

 $★ A^* + A → A_2^+ + e^-$: homonuclear associative ionisation, ★ ...

For detail:Ö. Şahin, İ. Tapan, E. N. Özmutlu and R. Veenhof, Penning transfer in argon-based gas mixtures, 2010 JINST 5 P05002.Sth RD51 Collaboration Meeting , 24-27 May 2010, Freiburg, GERMANY

7/15

Number of photons (n_{γ})

5th RD51 Collaboration Meeting, 24-27 May 2010, Freiburg, GERMANY

Avalanche sizes (d)

Photo-absorption cross sections (σ_{pa})

♦ Large σ_{pa} for Ar below the ionisation, ♦ Increase on σ_{pa} for bigger molecules,

Mean free path of photons (λ)

5th RD51 Collaboration Meeting, 24-27 May 2010, Freiburg, GERMANY

Estimated feedback probabilities

Ar + quencher

Estimated feedback probabilities

Ar + quencher

Summary

✤ We can learn about the feedback mechanisms considering;

- ✤ Mean free paths,
- Avalanche sizes,
- Number of photons produced per avalanche electron,

Penning transfer probability from the gain fits.

A microscopic model is needed to understand the mechanisms in detail.

???