THGEMs: very recent results towards applications in DHCAL & LXe detector readout

Marco Cortesi

Weizmann Institute of Science

Work within CERN-RD51

Weizmann: A. Breskin, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo, J. dos Santos, H. Natal da Luz, A. Coimbra Nantes: S. Duval, D. Thers UTA: A. White, S. Park

THGEM Recent works: Review NIM A **598** (2009) 107 2010 *JINST* **5** P01002 2009 *JINST* **4** P08001

Thick Gas Electron Multiplier (THGEM) ~ 10-fold expanded GEM

Weizmann Inst.

Thickness 0.5-1mm

SIMPLE, ROBUST, LARGE-AREA Printed-circuit technology

→Intensive R&D

→ Many applications:

- THGEM/CsI UV detectors for RICH
- Neutron imaging
- Charge sensors for DCAL
- Cryo detectors for Dark Matter

Double-THGEM: 10-100 higher gains

Effective single-electron detection Few-ns RMS time resolution (MIPs/UV) Sub-mm position resolution MHz/mm² rate capability Cryogenic operation: OK Gas: molecular and noble gases Pressure: 1mbar - few bar Magnetic fields: OK

Ne-based mixtures

- Comparatively low operation voltages reduced discharge probability, discharge energy and charging-up effects
- → High gains, even with single-THGEM lower detector thickness (Important for DHCAL)
- → High single-photoelectron gains even in the presence of ionizing background
 (higher dynamic range compared to Ar-mixtures)

Gain: Single/Double THGEM in Ne-mixtures

2009 JINST 4 P08001

Very high gain in <u>Ne and Ne mixtures</u>, even <u>with X-rays</u> At very low voltages !! X-rays: 2-THGEM 100% Ne: Gain 10⁶ @ ~300V UV: 1-THGEM Ne/CF₄(10%): Gain > 10⁶ @ ~800V

DHCAL applications

THGEM: sampling elements in Digital Hadron Calorimetry @ ILC

Digital Hadron Calorimetry: Different concepts proposed for the active sampling elements: GEM, RPC, Micromegas...

THGEM: a new solution proposed by Univ. Texas @ Arlington (UTA) & Weizmann

- → Interlaced steel-plates and THGEM multipliers.
- → Simple, robust, thin, compact, stable, high gain

May 2010: Chamber Prototype – test with X-rays

KPiX

8x8 anode pad layout

100x100mm² THGEMThickness \rightarrow 0.4 mmHole diam. \rightarrow 0.5 mmPitch \rightarrow 1.0 mmRim \rightarrow 0.1 mm

ore info about kpix-readout from. hite talk

THGEM Chamber Setup 2

THGEM + KPiX: Preliminary results 1

Double THGEM detector – Self Trigger operation Irradiation: 6keV non-collimated x-rays

neighbor pads

THGEM + KPiX: Preliminary results 2

DHCAL/THGEM: Future plans

- 1) Characterization and optimization of the small (10x10 cm²) THGEM-based detector prototype with MIP (beta/cosmic rays)
- 2) Test beam with small (10x10 cm²) THGEM-based detector prototype (CERN/FNAL)
- 3) Production of large (30x30 cm²) THGEM electrodes (in cooperation with local industry)
- 4) Design and construction of large-THGEM based detector (30x30 cm²; 33x100 cm²)
- 5) Characterization and optimization of large-THGEM based detector in DHCAL (CALICE)

Cryo-THGEM applications

Noble-gas detectors

Charge &/or scintillation-light detection in liquid phase

Possible applications:

- Noble liquid ionization calorimeters
- Noble-Liquid TPCs (solar neutrinos)
- Two-phase detectors for Rare Events
 (WIMPs, ββ-decay, ν ...)
- Noble-liquid γ-camera for medical imaging
- Gamma astronomy
- Gamma inspection
 - Use THGEM electron multipliers & THGEM/CsI photomultipliers ?

Weizmann Inst.

.

XEMIS LXe Compton Camera

Nantes/Weizmann

Tests in LXe: May 2010 @ Nantes Weizmann Inst.

Cryo-GPM for LXe Medical Compton Camera

2-phase DM detectors

Aprile/XENON

RD51: Weizmann/Nantes/Coimbra

Possible design of the XENON 1 ton two-phase LXe DM TPC detector with ~ 121 QUPID vacuum photon detectors. Background: 1mBq/tube

Expectation: < 1 WIMP interaction/Kg/Day

THGEM-GPM (gas photomultiplier):

- Simple, flat (save LXe), robust
- Low-cost
- Can be made Radio-clean ?
- Lower thresholds ?

XENON100Kg: running with PMTs!

PROBLEM: cost & natural radioactivity of multi-ton detectors!

Cryo-GPM with windows

2-phase or liquid scintillators

GPM in noble-gas: gain affected by lack of impurities <u>arXiv:1001.4741</u> **GPM w window:** better control of counting gas / stability

Double-THGEM/CsI at RT & CRYO-T

Preliminary results @ CRYO-T in "improvised" setup at Weizmann Cryo-medium: LN₂/ethanol Soon: studies at Nantes with LXe TPC

Samuel Duval, Ran Budnik, Artur Coimbra & Marco Cortesi (WIS)

Preliminary results in Ne/CF4 @ Coimbra: at RT, similar gain @ 1-3 bar

Cryo-THGEM : Future plan

- 1) Characterization and optimization of the small (3x3 cm²) THGEMbased detector prototype in cryogenic conditions (LN₂/ethanol; LXe)
- 2) Design and construction of a 100mm diameter GPM and tests in scintillation & double-phase detector modes (in double-phase: using XENON10 TPC)
- 3) R&D for design and production of radio-clean THGEM (Cirlex, Teflon, ...) for Dark Matter
- 4) Characterization and optimization of THGEM-based pixilated GPM readout schemes.

SUMMARY

- **THGEM** a versatile robust electron multiplier
- Good suitability for photon detection with **Ne-mixtures**
 - -) Low voltage \rightarrow Better stability, No demage induced by discharges
 - -) High Gain, even with single THGEM \rightarrow small detector thickness
 - -) Larger dynamic range \rightarrow Good stability in background enviroment
- Potential applications @ RT & low-T

Sampling elements for Digital Hadron Calorimeters Cryogenic UV-photon detectors for medical imaging and dark matter UV-photon detectors for RICH Neutron-imaging detectors Large-area moderate-resolution tracking detectors