

GEM in a double phase liquid xenon detector

Vladimir Solovov LIP-Coimbra

Double phase detector

Example: ZEPLIN III

RD51 collaboration meeting, Freiburg, 26 May 2010

Motivation

- PMTs remain the main source of intrinsic radioactivity
- How can we do a cleaner readout with comparable characteristics?
 - APD
 - SiPM
 - GEM + APD
 - CsI + GEM + APD

Experimental Set-Up

•Good thermostabilization plus a slight temperature gradient is the key to stable operation of a GEM in double phase Xe

•An authomatic temperature conrol highly increases realability

HV and Electronics

•Typical Voltages:

- $V_{\text{CATH}} = -6000V$
- V_{GEM} = +300..600V
- V_{col} = +2000V

•Bottom side of the GEM is grounded • E_L = 3..6 kV/cm depending on the liquid level

- •Charge-sensitive preamps (Cremat)
- •6 and 12 µs Semi-gaussian shaping
- •Calibration circuit (not shown)
- -Initial charge extracted from liquid (Q_0) is

typically 3 fC

Effective Gain =
$$Q_{et} / Q_0$$

Charge spectra

1200 still

1000

800 600 60 keV

VGEM = 600V

Gain = 80

1250

200

250

0

0

400

Gain = 140

600

800

1000

MCA channel

VGEM = 625V

Vgem=624V

Charge: Gain and resolution

The reason for poor resolution is very strong electric field in the gas gap (~6 kV/cm) Most of the driftig electrons do not make it to the GEM holes

GEM + APD

Advanced Photonix LAAPD

- Sensitive area: 0.2 cm²
- Dark current:
 - 50 nA typical @ 25 °C
 - <1nA @ -100 °C</p>
- Maximal gain:
 - 250 @ 25 °C
 - >1000 @ -100 °C
- QE ~ 1 @ 175 nm

- •GEM gain can be lower \rightarrow less discharging
- •Higher overall gain \rightarrow single electron detection should be possible
- •Less capacitance, less microphonic \rightarrow better signal-to-noise ratio
- •Less channels for position-sensitive readout

Light mode

What we see:

- •Higher gain, up to ~3000 electrons per primary electron
- •Lower resolution, maybe because we are multiplying two avalanche processes
- •The tail to the left is probably due to partial shadowing for off-center events

