Geant4 Simulation of Neutrons interaction with GEM-foil and gas

Gabriele Croci, Matteo Alfonsi, Serge Duarte Pinto, Leszek Ropelewski, Marco Villa (CERN)

5th RD51 Collaboration Meeting, Freiburg, 24-27 May 2010

Outline

- Simulation of 5.5 MeV neutron processes in a GEM detector in order to understand better the measurements performed with a Triple GEM detector in 5.5 MeV neutron beam in Athens
- Short description of the measurements
- Description of Geant4 simulation

Experimental Setup

- Triple GEM RD51 tracking detector 10 x 10 cm² active area powered using a resistor divider
- Standard GEM Foils (140 μm pitch, 50 μm hole diameter)
- Gas Mixture: Ar/CO₂ 70%/30%
- Full plane readout
- Pulse Height measurements: ORTEC 142 IH preamplifier and ORTEC 450 research amplifier
- Current Measurements (only on the anode): Keithley PicoAmp 6517 (1 pA resolution)
- 5.5 MeV neutrons from 2.8 MeV deuteron beam collision on a deuteron target
- Two different neutron fluxes

Picture of the experimental setup

Neutrons and Iron Spectra

Simulation parameters

- 5.5 MeV Neutrons
- Gas volume of dimensions 20cm*20cm*12mm
- Gas used Ar/C02 70%/30%
- 50 μm thick Kapton foil copper clad (5 μm) on both sides put in the middle of the gas volume (representing GEM foil w/o holes)
- 5 μm Cu Foil at the two sides of the gas volume, representing Drift and Anode electrode
- Sensitive Detector: Gas Volume
- Physics list QGSP_BERT_HP

Energy Deposition: First Results & Comparison with measurements

Understanding of the physics processes

A list of (some of) the recognized physics processes coming from primary neutrons

- Ar40
- γ
- $n + \gamma$
- p
- C12
- n + Ar40
- 016
- n + C12
- $n + Cu63 + \gamma$
- $P + \gamma$
- He4 + γ
- p + Ni63
- n + Ar36
- Cu63
- Cu65

- We want now to understand the places where the conversions come from:
 - We suspect that the protons are created from interaction with solid materials (Copper or Kapton)

The proton is able to escape, enter the gas and produce ionization

Origin Positions of particles generated by primary

neutrons zp htemp Kapton + copper zp {type==proton} 450981 h1 Entries 23062 Entries Mean 0.2802 RMS 1.746 Mean -4.279e-05 10⁵ ECopper RMS 0.01491 Copper **Protons** 104 Copper copper 10² **Kapton** 10³ ГЛ าโ๛๛๛๛๛โฦ๙ Gas Gas -0.02 -0.01 0.02 -0.03 0 0.01 0.03 -3 -2 -1 0 2 3 1 Origin Position (mm) Origin Postion (mm) zp {type==Ar40} h1 zp {type==Ar40} h1 4101 Entries Entries 4101 -0.02781 Mean 0.02908 Mean RMS 1.731 12 RMS 0.1769 12 10 10 zoom 8 8 6 6 Argon40 4 2 0 0 -2 -0.2 -3 -1 1 2 3 -0.1 0 0.1 0.2 0.3 Origin Position (mm) Origin Position (mm) Kapton 10 + copper

Conclusions

- The physics processes and the shape of the PH spectrum were correctly explained using the simulation
- The different contribution in the spectrum have been recognized
- The simulation gives the possibility to understand the place where the different particles are produced