

THE TECHNOLOGY TRANSFER NETWORK FOR PARTICLE PHYSICS: STATUS ON MPGD PILOT OFFER

TTN in a nutshell

Purpose: Build "corporate identity"

- Establish a genuine partnership / collaboration amongst institutes active in Particle Physics in MS
 - Bridging the gap between the institutes members of the TT Network and industry
 - Be an attractive partner for industry
 - Enlarging the KT & TT Offer
 - Making the PP offer more visible
 - KT & TT/IP practices and tools
 - Exchange experience and practices
 - Improve capabilities amongst TT Network members
- Develop the image of the PP community as a source of knowledge that benefits society

Programme of work:

- 3-year project to develop tools and methods in order to support a permanent operation
- Elaborate structures for the TT network permanent operation

Financing

During the execution of the project, the TT Network members will cover their own costs

Organisation & Composition

Organisation (during project phase):

TT Network Board composed of one designated representative of each node to review the advancements of the programme of work and take all appropriate actions for its execution.

Steering Committee composed of the work package conveners and the Network Coordinator to ensure the execution of

the programme of work.

NIKHEF and FZJülich interested

Institute	Member State	Category
CEA/IRFU	France	RI-HEP
CERN		RI-HEP
CHALMERS	Sweden	University
Copenhagen University	Denmark	University
CNRS/IN2P3	France	RI-HEP
DESY	Germany	RI-HEP
EPFL	Switzerland	University
GSI	Germany	RI-G
INFN	Italy	RI-HEP
JSI* Jožef Stefan Institute	Slovenia	RI-G
PSI Paul Scherrer Institute	Switzerland	RI-G
National Technical University of Athens	Greece	University
STFC*, Science & Technology Facilities Council	UK	RI-HEP
University of Sofia	Bulgaria	University
LIP	Portugal	University

(*) members since June 09

i i network

Results and Future Work Plans

Intellectual Property charter

• Intellectual Property policy, Knowledge and Technology Transfer policy, Collaborative and Contract research policy (while remaining compatible with open science)

Prototype version of the TT Network website for internal use and evaluation

- Make PP technologies & expertise more visible to industry
- PP Offer: Standard presentation of technologies, service capabilities & R&D opportunities
- Successful applications in research disciplines other than PP and in industry

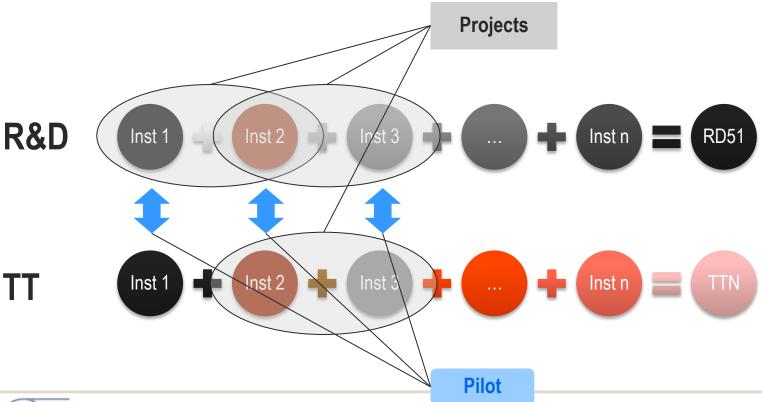
Build Network corporate identity

- PP brand, concerted communication strategy, community building tools (web, training, mobility, ..)
- Development of Push/Pull mechanisms (incl. technology pooling) and Collaborative scouting
- Further exploratory actions for other possible pilots such as Si Strips sensors and Si photomultipliers

Set-up a programme of work to address socio-economic impacts of PP

Implementation proposal

Implementation on practical cases that will be used as a pilots to develop and validate tools and methods necessary to build a PP corporate identity:


- PP specific technology
- Important and visible case with recognized TT potential
- Very good illustration of PP collaborative spirit
- Complex enough to address final goals: enhancing the attractiveness of PP technology
- General enough to trigger interest amongst TT Network members to validate/consolidate the results on other cases

RD51 and TTN

Some Similarities:

- Participating nodes share common vision, goals, strategy and projects
- Best practice exchange among participating nodes (TT is a sort of open science too ...)
- Concerted communication and community building

Why a MPGD-Pilot Proposal?

First pilot case: Micro Pattern Gaseous Detectors

- Large collaborative R&D efforts from PP community (RD-51, more than 60 institutions involved, not only PP institutes, important interest from industry);
 - Good case to define a collaborative scouting model
- Evidence for patent pooling (GEM, micromegas, front-end readout, software, etc.)
 - Very good case for the development of a collaborative push and pull model
 - First data to test community building tools; specify value and meaning of a PP brand
 - Test of concerted communication strategy
- Important and very visible case currently addressed by members of the TT Network individually with a limited collaboration at the TTO level
- TT Network member institutes participating in RD-51
 - CEA, CERN, CNRS, DESY, INFN, GSI
 - NTU, KFKI (TT Network Observer)

What are the benefits for RD51?

"The main objective of the R&D program is to advance technological development and application of Micro Pattern Gas Detectors." http://rd51-

public.web.cern.ch/RD51%2DPublic/

- →Increased visibility and awareness of RD51 technologies and expertise through concerted communication and building a MPGD community brand
- → Image of an organised community:
 - → More attractive R&D offer to industry in partnership
 - Concerted offer more attractive for industry to manufacture
- → Promote and strengthen the image of RD51 as reference source for MPGD technologies
- → Possibility to offer customer specific solution packages, expertise and services rather than raw technology components
- → Simplified access to RD51 technologies, patent pool and expertise
- →One SPOC (single point of contact) for facilitated identification of and access to RD51 technology offer

Achievements and To Do's

Achievements:

- ✓WP4 core team constituted
- ✓ RD51 collaboration informed
- ✓ TTN member contact persons for RD51 identified
- ✓ MPGD Inventory

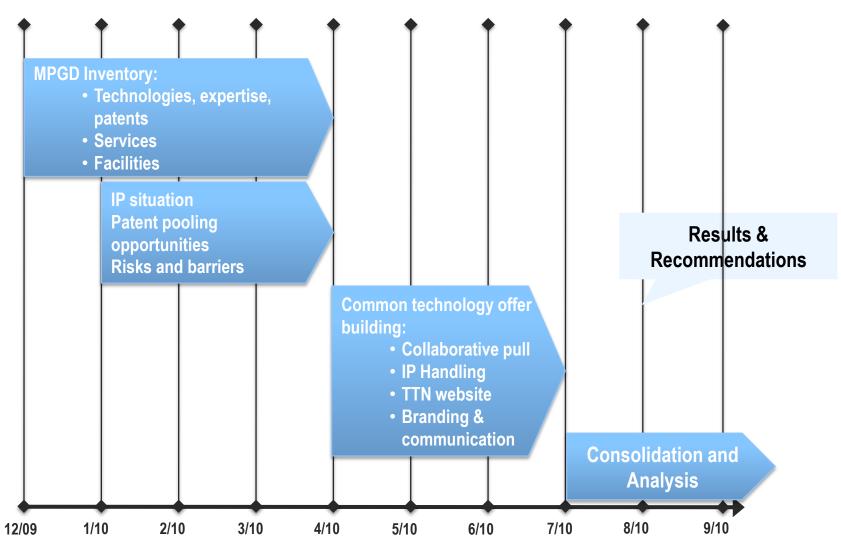
To do's:

- MPGD Inventory Consolidation
- MPGD Offer building
- Offer presentation

Pilot Preparation

- Constitute WP4 team
- Identify RD51 contact persons
- Inform RD51 collaboration

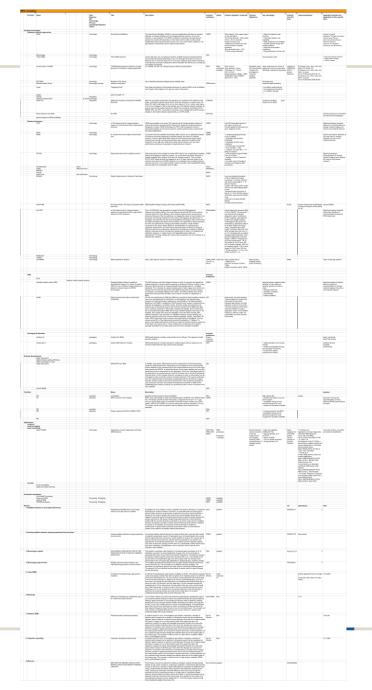
Inventory


- Technologies, expertise, patents
- Services
- Facilities
- IP situation, pooling opportunities
- · Risks and barriers

Offer building

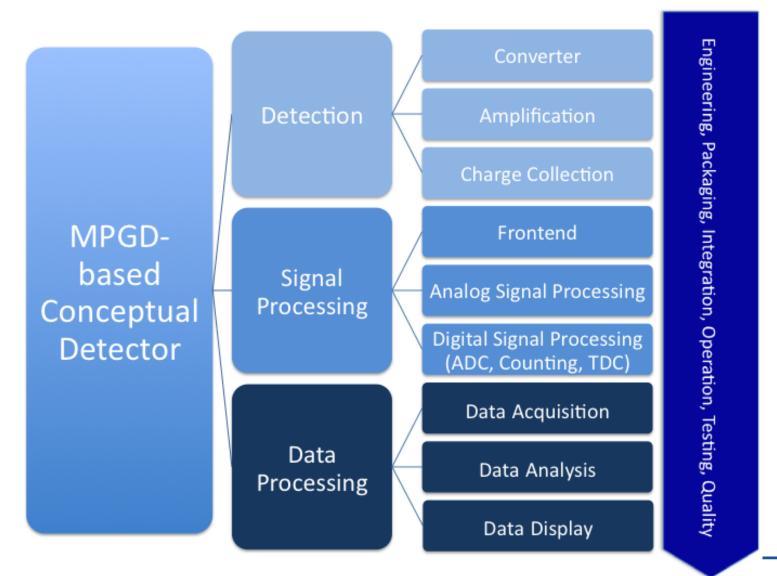
- Collaborative pull
- IP handling
- TTN website
- Branding and communication

WP4: High Level Work Plan

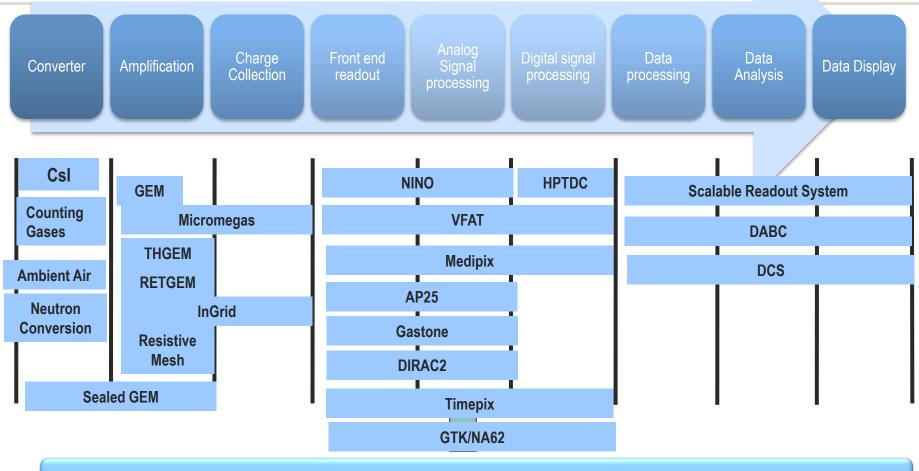

Months TT Network

MPGD Inventory

Collect information on MPGD related technology:


- GEM, Micromegas, THGEM, Ingrid, etc.
- Medipix, VFAT, NINO, HPTDC, etc.
- SRS, etc.
- Production of GEM, THGEM, etc.
- Applications
- Facilities
- Patents

Classify along a conceptual detector scheme



MPGD Conceptual Detector

Classification of MPGD solution elements

Expertise (Engineering, Production, Packaging, Integration, Operation, Testing, Quality)

Facilities

Key Requirements from Specific Applications (1/2)

Part					<u> </u>	<u> </u>			<u> </u>			
Tacker systems Tacker systems Control	Domains	Application	Converter	Amplification	charge collection	Frontend Readout	Analog Signal Processing	Digital Signal Processing	Data Acquisition	Data Analysis	Data Display	General Requirements
Tacker systems Tacker systems Control												
Tacker systems Tacker systems Control												
Owner Section Sectio												
Ministry												
Number N												
No.												
Record R		riuorescence ivieasurement										
Record R	health sect	or										
## Part	nealth sect	Я	high detection									
Augustion Section Se			efficiency (close to 100% to reduce patient dose rate)@140keV position resolution									highly segmented photodetectors event rate: 100MHz/mm^2 (!) 1000 projections / s
high detection efficiency 90% polition		digital radiography and CT	<0.5mm	>10^4 -10^5	< few ns	shaping	fast discrimination	counting logic				
Momeland Security		PET imaging	efficiency >90% position resolution <5mm no parallax error	>10^4 -10^5	< few ns				(some 10^5 readout channels	device specific	device specific	highly segmented photodetectors 150-200 detector modules per scanner 25cm^2 per module 100kHz typical single rate per module 1MHz maximum single rate per module 1MHz typical coincidence rate per scanner 4MHz typical coincidence rate per
homeland security Muon Tomography Ingly detection on high detection of high detection of high detection of high detection on high detection of high detection on high detect		<u> </u>						,	,	·	·	
Muon Tomography high detection efficiency for high energy gammas (1MeV) and fast neutrons (14MeV) Combined gamma/neutron scanning in cargo scanners Safety & environment material inspection Targo (rystallography) Neutron detection efficiency 50% to 100% for thermal neutrons size: 0.1m² to 100% for thermal neutrons size:		beam monitoring	budget									
high detection officiency for high energy gammas (1MeV) and fast neutrons (14MeV) pixel size: 0(mm²2) p												
Final		Muon Tomography										
material inspection material science material science Neutron detection Size: 1mm²2 Pixel size: 1mm²2 rate cap. >>100kHz time resolution < 1 Size: 1mm²2 time resolution < 1 Size:		in cargo scanners	efficiency for high energy gammas (1MeV) and fast neutrons					counting logic				short scanning time (1-2 minutes)
material science X-ray Crystallography Neutron detection detection detection detection detection detection efficiency 50% to 100% for thermal neutrons size: 0.1m²2 to 10m²2 cultural heritage Energy neutron flux measurements												
X-ray Crystallography Neutron detection Neutron detection Activation Acti		material mopeodori										
Neutron detection detection detection efficiency 50% to 100% for thermal neutrons size: 0.1m/2 to 10m/2 cultural heritage Energy neutron flux measurements	material sci	ence										
detection efficiency 50% to 100% for thermal neutrons size: 0.1 m/2 to 10m/2 cultural heritage Energy neutron flux measurements detection efficiency 50% to 100% for thermal neutrons size: 0.1 m/2 to 1cm/2 rate cap. >>100 kHz time resolution < 1us Robustness Reliability Large scale manufacturability energy neutron flux measurements		X-ray Crystallography										
efficiency 50% to 100% for thermal neutrons size: 0.1 m/2 to 10m/2 to 10m/2 rate cap. >> 100 kHz time resolution < 1us cultural heritage Energy neutron flux measurements neutrons size: 0.1 m/2 to 10m/2 rate cap. >> 100 kHz time resolution < 1us efficiency 50% to 100% for thermal neutrons size: 0.1 m/2 to 10m/2 rate cap. >> 100 kHz time resolution < 1us energy neutron flux measurements neutron flux mea	Neutron de	tection										
cultural heritage Energy neutron flux measurements ne			efficiency 50% to 100% for thermal neutrons size: 0.1m^2 to			rate cap. >>100kHz	time resolution < 1us					Reliability
neutron flux measurements	cultural heri	tage										
neutron flux measurements												
purning piasma diagnostics												
		burning plasma diagnostics										l

TT Network

Key Requirements from Specific Applications (2/2)

Annlingti		A 1::6:	-1	Fuentend	Analog	Digital Signal	Data	Data	Doto	
Applicati on	Converter	Amplifi- cation	charge collection	Frontend Readout	Signal Processing	Proces- sing	Acqui- sition	Analy- sis	Data Display	General Requirements
PET imaging	high detection efficiency >90% position resolution <5mm no parallax error	>10^4 -10^5	< few ns	fast signal shaping: <10ns	signal discrimination with timing resolution <100ps	counting and/or time stamping (<100ps)	high band- width (some 10^5 readout channels	device specific	device specific	dense conversion materials highly segmented photodetectors 150 -200 detector modules per scanner 25cm^2 per module 100kHz typical single rate per module 1MHz maximum single rate per module 1MHz typical coincidence rate per scanner 4MHz typical coincidence rate per scanner
N- detection	detection efficiency 50% to 100% for thermal neutrons size: 0.1m^2 to 10m^2		Pixel size: 1mm^2 to 1cm^2	rate cap. >>100kHz	time resolution < 1us					Robustness Reliability Large scale manufacturability

From Technology Bricks to Solution Packages: How to Proceed?

Identify Key
Application
Requirements

Validate feasibility, maturity, availability

Check access conditions

Consolidate and propose appropriate offer

Role of TTO:

 MPGD inventory maintenance, market analysis, IP situation, MPGD technology offer

Role of Researcher:

 Validation of MPGD technology inventory, validation of key requirements, consultancy for technology offer "The main objective of the R&D program is to advance technological development and application of Micro Pattern Gas Detectors."

TTO and Researche

→Increased visibility and awareness of RD51 technologies and expertise through

- concerted communication and building a MPGD community brand
 →Image of an organised community:
- → More attractive R&D offer to industry in partnership
- Concerted offer more attractive for industry to manufacture
- →Promote and strengthen the image of RD51 as reference source for MPGD technologies
- →Possibility to offer customer specific solution packages, expertise and services rather than raw technology components
- →Simplified access to RD51 technologies, patent pool and expertise
- →One SPOC (single point of contact) for facilitated identification of and access to RD51 technology offer

Thank you for your attention

For more information and questions please contact:

Hartmut.Hillemanns@cern.ch